• This record comes from PubMed

Cytogenetic Evidence for Sex Chromosomes and Karyotype Evolution in Anguimorphan Lizards

. 2021 Jun 28 ; 10 (7) : . [epub] 20210628

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
GAČR 19-19672S Grantová Agentura České Republiky
PRIMUS/SCI/46 Univerzita Karlova v Praze
Research Centre Program (204069) Univerzita Karlova v Praze

Anguimorphan lizards are a morphologically variable group of squamate reptiles with a wide geographical distribution. In spite of their importance, they have been cytogenetically understudied. Here, we present the results of the cytogenetic examination of 23 species from five anguimorphan families (Anguidae, Helodermatidae, Shinisauridae, Varanidae and Xenosauridae). We applied both conventional (Giemsa staining and C-banding) and molecular cytogenetic methods (fluorescence in situ hybridization with probes for the telomeric motifs and rDNA loci, comparative genome hybridization), intending to describe the karyotypes of previously unstudied species, to uncover the sex determination mode, and to reveal the distribution of variability in cytogenetic characteristics among anguimorphan lizards. We documented that karyotypes are generally quite variable across anguimorphan lineages, with anguids being the most varying. However, the derived chromosome number of 2n = 40 exhibits a notable long-term evolutionary stasis in monitors. Differentiated ZZ/ZW sex chromosomes were documented in monitors and helodermatids, as well as in the anguids Abronia lythrochila, and preliminary also in Celestus warreni and Gerrhonotus liocephalus. Several other anguimorphan species have likely poorly differentiated sex chromosomes, which cannot be detected by the applied cytogenetic methods, although the presence of environmental sex determination cannot be excluded. In addition, we uncovered a rare case of spontaneous triploidy in a fully grown Varanus primordius.

See more in PubMed

Wilson M.A., Makova K.D. Genomic analyses of sex chromosome evolution. Rev. Genom. Hum. Genet. 2009;10:333–354. doi: 10.1146/annurev-genom-082908-150105. PubMed DOI

Bachtrog D., Mank J.E., Peichel C.L., Kirkpatrick M., Otto S.P., Ashman T.L., Hahn M.W., Kitano J., Mayrose I., Ming R., et al. Tree of sex consortium. Sex determination: Why so many ways of doing it? PLoS Biol. 2014;12:e1001899. doi: 10.1371/journal.pbio.1001899. PubMed DOI PMC

Pennell M.W., Mank J.E., Peichel C.L. Transitions in sex determination and sex chromosomes across vertebrate species. Mol. Ecol. 2018;27:3950–3963. doi: 10.1111/mec.14540. PubMed DOI PMC

Ohno S. Sex Chromosomes and Sex-Linked Genes. Springer; Berlin/Heidelberg, Germany: 1967.

Rice W.R. The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution. 1987;41:911–914. doi: 10.1111/j.1558-5646.1987.tb05864.x. PubMed DOI

Charlesworth B. The evolution of chromosomal sex determination and dosage compensation. Curr. Biol. 1996;6:149–162. doi: 10.1016/S0960-9822(02)00448-7. PubMed DOI

Kostmann A., Kratochvíl L., Rovatsos M. Poorly differentiated XX/XY sex chromosomes are widely shared across skink radiation. Proc. R. Soc. B. 2021;288:20202139. doi: 10.1098/rspb.2020.2139. PubMed DOI PMC

Rovatsos M., Johnson Pokorná M., Altmanová M., Kratochvíl L. Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: Furcifer): Differentiation of sex and neo-sex chromosomes. Sci. Rep. 2015;5:13196. doi: 10.1038/srep13196. PubMed DOI PMC

Rovatsos M., Altmanová M., Augstenová B., Mazzoleni S., Velenský P., Kratochvíl L. ZZ/ZW sex determination with multiple neo-sex chromosomes is common in Madagascan chameleons of the genus Furcifer (Reptilia: Chamaeleonidae) Genes. 2019;10:1020. doi: 10.3390/genes10121020. PubMed DOI PMC

Epplen J.T., McCarrey J.R., Sutou S., Ohno S. Base sequence of a cloned snake W-chromosome 65DNA fragment and identification of a male-specific putative mRNA in the mouse. Proc. Natl. Acad. Sci. USA. 1982;79:3798–3802. doi: 10.1073/pnas.79.12.3798. PubMed DOI PMC

Nanda I., Deubelbeiss C., Guttenbach M., Epplen J.T., Schmid M. Heterogeneities in the distribution of (GACA)n simple repeats in the karyotypes of primates and mouse. Hum. Genet. 1990;85:187–194. doi: 10.1007/BF00193194. PubMed DOI

Steinemann S., Steinemann M. Retroelements: Tools for sex chromosome evolution. Cytogenet. Genome Res. 2005;110:134–143. doi: 10.1159/000084945. PubMed DOI

Kejnovsky E., Hobza R., Cermak T., Kubat Z., Vyskot B. The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity. 2009;102:533–541. doi: 10.1038/hdy.2009.17. PubMed DOI

O’Meally D., Patel H.R., Stiglec R., Sarre S.D., Georges A., Marshall Graves J.A., Ezaz T. Non-homologous sex chromosomes of birds and snakes share repetitive sequences. Chromosome Res. 2010;18:787–800. doi: 10.1007/s10577-010-9152-9. PubMed DOI

Pokorná M., Kratochvíl L., Kejnovský E. Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox) BMC Genet. 2011;12:90. doi: 10.1186/1471-2156-12-90. PubMed DOI PMC

Matsubara K., Sarre S.D., Georges A., Matsuda Y., Graves J.A.M., Ezaz T. Highly differentiated ZW sex microchromosomes in the Australian Varanus species evolved through rapid amplification of repetitive sequences. PLoS ONE. 2014;9:e95226. doi: 10.1371/journal.pone.0095226. PubMed DOI PMC

Matsubara K., O’Meally D., Azad B., Georges A., Sarre S.D., Graves J.A.M., Matsuda Y., Ezaz T. Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma. 2016;125:111–123. doi: 10.1007/s00412-015-0531-z. PubMed DOI

Augstenová B., Mazzoleni S., Kratochvíl L., Rovatsos M. Evolutionary dynamics of the W chromosome in caenophidian snakes. Genes. 2018;9:5. doi: 10.3390/genes9010005. PubMed DOI PMC

Suwala G., Altmanová M., Mazzoleni S., Karameta E., Pafilis P., Kratochvíl L., Rovatsos M. Evolutionary variability of W-linked repetitive content in Lacertid lizards. Genes. 2020;11:531. doi: 10.3390/genes11050531. PubMed DOI PMC

Uetz P., Freed P., Hošek J., editors. The Reptile Database. [(accessed on 5 March 2021)];2020 Available online: http://www.reptile-database.org.

Pyron R.A., Burbrink F.T., Wiens J.J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 2013;13:1–54. doi: 10.1186/1471-2148-13-93. PubMed DOI PMC

Gorman G.C., Gress F. Chromosome cytology of four boid snakes and a varanid lizard, with comments on the cytosystematics of primitive snakes. Herpetologica. 1970;26:308–317.

Singh L., Sharma T., Ray-Chaudhu S.P. Chromosome numbers and sex chromosomes in few Indian species of amphibia and reptiles. Mamm. Chrom. News. 1970;11:91–94.

Singh L. Study of mitotic and meiotic chromosomes in seven species of lizards. Proc. Zool. Soc. 1974;27:57–79.

King M., King D. Chromosomal evolution in the lizard genus Varanus (Reptilia) Aust. J. Biol. Sci. 1975;28:89–108. doi: 10.1071/BI9750089. PubMed DOI

De Smet W.H.O. Description of the orsein stained karyotypes of 136 lizard species (Lacertilia, Reptilia) belonging to the families Teiidae, Scincidae, Lacertidae, Cordylidae and Varanidae (Autarchoglossa) Acta Zool. Pathol. Antverp. 1981;76:407–420.

King M., Mengden G.A., King D. A pericentric-inversion polymorphism and a ZZ/ZW sex-chromosome system in Varanus acanthurus Boulenger analysed by G- and C-banding and Ag staining. Genetica. 1982;58:39–45. doi: 10.1007/BF00056001. DOI

Porter C., Haiduk M., De Queiroz K. Evolution and phylogenetic significance of ribosomal gene location in chromosomes of squamate reptiles. Copeia. 1994;1994:302–313. doi: 10.2307/1446980. DOI

Srikulnath K., Uno Y., Nishida C., Matsuda Y. Karyotype evolution in monitor lizards: Cross-species chromosome mapping of cDNA reveals highly conserved synteny and gene order in the Toxicofera clade. Chromosome Res. 2013;21:805–819. doi: 10.1007/s10577-013-9398-0. PubMed DOI

Johnson Pokorná M., Altmanová M., Rovatsos M., Velenský P., Vodička R., Rehák I., Kratochvíl L. First description of the karyotype and sex chromosomes in the Komodo dragon (Varanus komodoensis) Cytogenet. Genome Res. 2016;148:284–291. doi: 10.1159/000447340. PubMed DOI

Patawang I., Tanomtong A. Constitutive heterochromatin observed on metaphase chromosome of Varanus bengalensis by C-banding and DAPI methods. Cytologia. 2017;82:1. doi: 10.1508/cytologia.82.1. DOI

Patawang I., Tanomtong A., Getlekha N., Phimphan S., Pinthong K., Neeratanaphan L. Standardized karyotype and idiogram of bengal monitor lizard, Varanus bengalensis (Squamata, Varanidae) Cytologia. 2017;82:75–82. doi: 10.1508/cytologia.82.75. DOI

Iannucci A., Altmanová M., Ciofi C., Ferguson-Smith M., Milan M., Pereira J.C., Pether J., Rehák I., Rovatsos M., Stanyon R., et al. Conserved sex chromosomes and karyotype evolution in monitor lizards (Varanidae) Heredity. 2019;123:215–227. doi: 10.1038/s41437-018-0179-6. PubMed DOI PMC

Rovatsos M., Rehák I., Velenský P., Kratochvíl L. Shared ancient sex chromosomes in varanids, beaded lizards, and alligator lizards. Mol. Biol. Evol. 2019;36:1113–1120. doi: 10.1093/molbev/msz024. PubMed DOI

Lind A.L., Lai Y.Y., Mostovoy Y., Holloway A.K., Iannucci A., Mak A.C.Y., Fondi M., Orlandini V., Eckalbar W.L., Milan M., et al. Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards. Nat. Ecol. Evol. 2019;3:1241–1252. doi: 10.1038/s41559-019-0945-8. PubMed DOI PMC

Johnson Pokorná M., Rovatsos M., Kratochvíl L. Sex chromosomes and karyotype of the (nearly) mythical creature, the Gila monster, Heloderma suspectum (Squamata: Helodermatidae) PLoS ONE. 2014;9:e104716. PubMed PMC

Bury R.B., Gorman G.C., Lynch J.F. Karyotypic data for five species of anguid lizards. Experientia. 1969;25:314–316. doi: 10.1007/BF02034418. PubMed DOI

Beçak M.L., Beçak W., Denaro L. Chromosome polymorphism, geographical variation and karyotypes in Sauria. Caryologia. 1972;25:313–326. doi: 10.1080/00087114.1972.10796485. DOI

Stamm B., Gorman G.C. Notes on the chromosomes of Anolis agassizi (Sauria: Iguanidae) and Diploglossus millepunctatus (Sauria: Anguidae) In: Graham J.B., editor. The Biological Investigation of Malpelo Island. Volume 176. Smithsonian Contributions to Zoology Colombia; Washington, DC, USA: 1975. pp. 52–56.

Bezy R.L., Gorman G.C., Kim Y.J., Wright J.W. Chromosomal and genetic divergence in the fossorial lizards of the family Anniellidae. Syst. Biol. 1977;26:57–71. doi: 10.1093/sysbio/26.1.57. DOI

Olmo E., Signorino G.G. Chromorep: A Reptile Chromosomes Database. [(accessed on 4 March 2021 )];2005 Available online: http://chromorep.univpm.it.

Mezzasalma M., Guarino F.M., Aprea G., Petraccioli A., Crottini A., Odierna G. Karyological evidence for diversification of Italian slow worm populations (Squamata, Anguidae) Comp. Cytogenet. 2013;7:217. doi: 10.3897/compcytogen.v7i3.5398. PubMed DOI PMC

Papenfuss T.J., Parham J.F. Four new species of California legless lizards (Anniella) Breviora. 2013;536:1–17. doi: 10.3099/MCZ10.1. DOI

Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Turtles of the genera Geoemyda and Pangshura (Testudines: Geoemydidae) lack differentiated sex chromosomes: The end of a 40-year error cascade for Pangshura. PeerJ. 2019;7:e6241. doi: 10.7717/peerj.6241. PubMed DOI PMC

Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI

Ijdo J.W., Baldini A., Ward D.C., Reeders S.T., Wells R.A. Origin of human chromosome 2: An ancestral telomere-telomere fusion. Proc. Natl. Acad. Sci. USA. 1991;88:9051–9055. doi: 10.1073/pnas.88.20.9051. PubMed DOI PMC

Endow S.A. Polytenization of the ribosomal genes on the X and Y chromosomes of Drosophila melanogaster. Genetics. 1982;100:375–385. doi: 10.1093/genetics/100.3.375. PubMed DOI PMC

Oguiura N., Ferrarezzi H., Batistic R.F. Cytogenetics and molecular data in snakes: A phylogenetic approach. Cytogenet. Genome Res. 2009;127:128–142. doi: 10.1159/000295789. PubMed DOI

Rovatsos M., Altmanová M., Johnson Pokorná M., Velenský P., Sanchez Baca A., Kratochvíl L. Evolution of karyotypes in chameleons. Genes. 2017;8:382. doi: 10.3390/genes8120382. PubMed DOI PMC

Gorman G. The Chromosomes of the Reptilia, a Cytotaxonomic Interpretation. In: Chiarelli A.B., Capanna E., editors. Cytotaxonomy and Vertebrate Evolution. Academic Press; Cambridge, MA, USA: 1973.

Gao J., Li Q., Wang Z., Zhou Y., Martelli P., Li F., Xiong Z., Wang J., Yang H., Zhang G. Sequencing, de novo assembling, and annotating the genome of the endangered Chinese crocodile lizard Shinisaurus crocodilurus. GigaScience. 2017;6:gix041. doi: 10.1093/gigascience/gix041. PubMed DOI PMC

Nanda I., Schrama D., Feichtinger W., Haaf T., Schartl M., Schmid M. Distribution of telomeric (TTAGGG)n sequences in avian chromosomes. Chromosoma. 2002;111:215–227. doi: 10.1007/s00412-002-0206-4. PubMed DOI

Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Sex is determined by XX/XY sex chromosomes in Australasian side-necked turtles (Testudines: Chelidae) Sci. Rep. 2020;10:4276. doi: 10.1038/s41598-020-61116-w. PubMed DOI PMC

Clemente L., Mazzoleni S., Pensabene Bellavia E., Augstenová B., Auer M., Praschag P., Protiva T., Velenský P., Wagner P., Fritz U., et al. Interstitial telomeric repeats are rare in turtles. Genes. 2020;11:657. doi: 10.3390/genes11060657. PubMed DOI PMC

Rovatsos M., Pokorná M.J., Kratochvíl L. Differentiation of sex chromosomes and karyotype characterisation in the dragon snake Xenodermus javanicus (Squamata: Xenodermatidae) Cytogenet. Genome Res. 2015;147:48–54. doi: 10.1159/000441646. PubMed DOI

Burt D.W. Origin and evolution of avian microchromosomes. Cytogenet. Genome Res. 2002;96:97–112. doi: 10.1159/000063018. PubMed DOI

International Chicken Genome Sequencing Consortium Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432:695–716. doi: 10.1038/nature03154. PubMed DOI

Backström N., Forstmeier W., Schielzeth H., Mellenius H., Nam K., Bolund E., Webster M.T., Öst T., Schneider M., Kempenaers B., et al. The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Res. 2010;20:485–495. doi: 10.1101/gr.101410.109. PubMed DOI PMC

Melek M., Shippen D.E. Chromosome healing: Spontaneous and programmed de novo telomere formation by telomerase. Bioessays. 1996;18:301–308. doi: 10.1002/bies.950180408. PubMed DOI

Shay J.R., Wright W.E. Telomeres and telomerase: Three decades of progress. Nat. Rev. Genet. 2019;20:299–309. doi: 10.1038/s41576-019-0099-1. PubMed DOI

Bolzán A.D. Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. Mutat. Res. 2017;773:51–65. doi: 10.1016/j.mrrev.2017.04.002. PubMed DOI

Bolzán A.D., Bianchi M.S. Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat. Res. 2006;612:189–214. doi: 10.1016/j.mrrev.2005.12.003. PubMed DOI

Ruiz-Herrera A., Nergadze S.G., Santagostino M., Giulotto E. Telomeric repeats far from the ends: Mechanisms of origin and role in evolution. Cytogenet. Genome Res. 2008;122:219–228. doi: 10.1159/000167807. PubMed DOI

Birchler J.A., Presting G.G. Retrotransposon insertion targeting: A mechanism for homogenization of centromere sequences on nonhomologous chromosomes. Genes. Dev. 2012;26:638–640. doi: 10.1101/gad.191049.112. PubMed DOI PMC

Rovatsos M.T., Marchal J.A., Romero-Fernández I., Fernández F.J., Giagia-Athanosopoulou E.B., Sánchez A. Rapid, independent, and extensive amplification of telomeric repeats in pericen-tromeric regions in karyotypes of arvicoline rodents. Chromosome Res. 2011;19:869–882. doi: 10.1007/s10577-011-9242-3. PubMed DOI

Rovatsos M., Marchal J.A., Giagia-Athanasopoulou E., Sánchez A. Molecular composition of heterochromatin and its contribution to chromosome variation in Microtus thomasi/Microtus atticus species complex. Genes. 2021;12:807. doi: 10.3390/genes12060807. PubMed DOI PMC

Augstenová B., Mazzoleni S., Kostmann A., Altmanová M., Frynta D., Kratochvíl L., Rovatsos M. Cytogenetic analysis did not reveal differentiated sex chromosomes in ten species of boas and pythons (Reptilia: Serpentes) Genes. 2019;10:934. doi: 10.3390/genes10110934. PubMed DOI PMC

Gvoždík V., Benkovský N., Crottini A., Bellati A., Moravec J., Romano A., Sacchi R., Jandzik D. An ancient lineage of slow worms, genus Anguis (Squamata: Anguidae), survived in the Italian Peninsula. Mol. Phylogenet. Evol. 2013;69:1077–1092. doi: 10.1016/j.ympev.2013.05.004. PubMed DOI

Lin L.-H., Wiens J.J. Comparing macroecological patterns across continents: Evolution of climatic niche breadth in varanid lizards. Ecography. 2017;40:960–970. doi: 10.1111/ecog.02343. DOI

De Oca A.N.M., Barley A.J., Meza-Lázaro R.N., García-Vázquez U.O., Zamora-Abrego J.G., Thomson R.C., Leaché A.D. Phylogenomics and species delimitation in the knob-scaled lizards of the genus Xenosaurus (Squamata: Xenosauridae) using ddRADseq data reveal a substantial underestimation of diversity. Mol. Phylogenet. Evol. 2017;106:241–253. doi: 10.1016/j.ympev.2016.09.001. PubMed DOI

Brennan I.G., Lemmon A.R., Lemmon E.M., Portik D.M., Weijola V., Welton L., Donnellan S.C., Keogh J.S. Phylogenomics of monitor lizards and the role of competition in dictating body size disparity. Syst. Biol. 2021;70:120–132. doi: 10.1093/sysbio/syaa046. PubMed DOI

Porter C.A., Hamilton M.J., Sites J.W., Jr., Baker R.J. Location of ribosomal DNA in chromosomes of squamate reptiles: Systematic and evolutionary implications. Herpetologica. 1991;47:271–280.

Stults D.M., Killen M.W., Pierce H.H., Pierce A.J. Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res. 2008;18:13–18. doi: 10.1101/gr.6858507. PubMed DOI PMC

Altmanová M., Rovatsos M., Kratochvíl L., Johnson Pokorná M. Minute Y chromosomes and karyotype evolution in Madagascan iguanas (Squamata: Iguania: Opluridae) Biol. J. Linn. Soc. 2016;118:618–633. doi: 10.1111/bij.12751. DOI

Sochorová J., Garcia S., Gálvez F., Symonová R., Kovařík A. Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma. 2017;127:141–150. doi: 10.1007/s00412-017-0651-8. PubMed DOI PMC

Mazzoleni S., Rovatsos M., Schillaci O., Dumas F. Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes. Comp. Cytogenet. 2018;12:27–40. doi: 10.3897/compcytogen.v12i1.19381. PubMed DOI PMC

Micolino R., Cristiano M.P., Travenzoli N.M., Lopes D.M., Cardoso D.C. Chromosomal dynamics in space and time: Evolutionary history of Mycetophylax ants across past climatic changes in the Brazilian Atlantic coast. Sci. Rep. 2019;9:18800. doi: 10.1038/s41598-019-55135-5. PubMed DOI PMC

Degrandi T.M., Gunski R.J., Garnero A.D.V., Oliveira E.H.C., Kretschmer R., Souza M.S. Barcellos, S.A.; Hass, I. The distribution of 45S rDNA sites in bird chromosomes suggests multiple evolutionary histories. Genet. Mol. Biol. 2020;43:e20180331. doi: 10.1590/1678-4685-gmb-2018-0331. PubMed DOI PMC

Literman R., Badenhorst D., Valenzuela N. qPCR-based molecular sexing by copy number variation in r RNA genes and its utility for sex identification in soft-shell turtles. Methods Ecol. Evol. 2014;5:872–880. doi: 10.1111/2041-210X.12228. DOI

Literman R., Radhakrishnan S., Tamplin J., Burke R., Dresser C., Valenzuela N. Development of sexing primers in Glyptemys insculpta and Apalone spinifera turtles uncovers an XX/XY sex-determining system in the critically-endangered bog turtle Glyptemys muhlenbergii. Conserv. Genet. Resour. 2017;9:651–658. doi: 10.1007/s12686-017-0711-7. DOI

Rovatsos M., Praschag P., Fritz U., Kratochvíl L. Stable Cretaceous sex chromosomes enable molecular sexing in softshell turtles (Testudines: Trionychidae) Sci. Rep. 2017;7:42150. doi: 10.1038/srep42150. PubMed DOI PMC

Kostmann A., Kratochvíl L., Rovatsos M. First report of sex chromosomes in plated lizards (Squamata: Gerrhosauridae) Sex. Dev. 2021:1–6. doi: 10.1159/000513764. PubMed DOI

Zurita F., Sánchez A., Burgos M., Jiménez R., de la Guardia R.D. Interchromosomal, intercellular and interindividual variability of NORs studied with silver staining and in situ hybridization. Heredity. 1997;78:229–234. doi: 10.1038/hdy.1997.36. PubMed DOI

Zurita F., Jimenez R., Burgos M., de La Guardia R.D. Sequential silver staining and in situ hybridization reveal a direct association between rDNA levels and the expression of homologous nucleolar organizing regions: A hypothesis for NOR structure and function. J. Cell Sci. 1998;111:1433–1439. doi: 10.1242/jcs.111.10.1433. PubMed DOI

Nirchio M., Oliveira C., Ferreira I.A., Granado A., Ron E. Extensive polymorphism and chromosomal characteristics of ribosomal DNA in the characid fish Triportheus venezuelensis (Characiformes, Characidae) Genet. Mol. Biol. 2007;30:25–30. doi: 10.1590/S1415-47572007000100007. DOI

Miller L., Knowland J. Reduction of ribosomal RNA synthesis and ribosomal RNA genes in a mutant of Xenopus laevis which organizes only a partial nucleolus: II. The number of ribosomal RNA genes in animals of different nucleolar types. J. Mol. Biol. 1970;53:329–338. doi: 10.1016/0022-2836(70)90069-0. PubMed DOI

Gibbons J.G., Branco A.T., Godinho S.A., Yu S., Lemos B. Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes. Proc. Natl. Acad. Sci. USA. 2015;112:2485–2490. doi: 10.1073/pnas.1416878112. PubMed DOI PMC

Xu B., Li H., Perry J.M., Singh V.P., Unruh J., Yu Z., Zakari M., McDowell W., Li L., Gerton J.L. Ribosomal DNA copy number loss and sequence variation in cancer. PLoS Genet. 2017;13:e1006771. doi: 10.1371/journal.pgen.1006771. PubMed DOI PMC

Kobayashi T. How does genome instability affect lifespan? Roles of rDNA and telomeres. Genes Cells. 2011;16:617–624. doi: 10.1111/j.1365-2443.2011.01519.x. PubMed DOI PMC

Rovatsos M., Augstenová B., Altmanová M., Sloboda M., Kodym P., Kratochvíl L. Triploid colubrid snake provides insight into the mechanism of sex determination in advanced snakes. Sex. Dev. 2018;12:251–255. doi: 10.1159/000490124. PubMed DOI

Tiersch T.R., Figiel C.R. A triploid snake. Copeia. 1991;1991:838–841. doi: 10.2307/1446412. DOI

Peters G. Die intragenerischen Gruppen und die Phylogenese der Schmetterlingsagamen (Agamidae: Leiolepis) Zool. Jahrb. Syst. 1971;98:11–130.

Moritz C. Parthenogenesis in the endemic Australian lizard Heteronotia binoei (Gekkonidae) Science. 1983;220:735–737. doi: 10.1126/science.220.4598.735. PubMed DOI

Moritz C., Case T.J., Bolger D.T., Donnellan S. Genetic diversity and the history of pacific island house geckos (Hemidactylus and Lepidodactylus) Biol. J. Linn. Soc. 1993;48:113–133. doi: 10.1111/j.1095-8312.1993.tb00882.x. DOI

Darevsky I.S., Kupriyanova L.A., Roshchin V.V. A new all-female triploid species of gecko and karyological data on the bisexual Hemidactylus frenatus from Vietnam. J. Herpetol. 1984;18:277–284. doi: 10.2307/1564081. DOI

Wynn A.H., Cole C.J., Gardner A.L. Apparent triploidy in the unisexual Brahminy blind snake, Ramphotyphlops braminus. Am. Mus. Novit. 1987;2868:1–7.

Adams M., Foster R., Hutchinson M.N., Hutchinson R.G., Donnellan S.C. The Australian scincid lizard Menetia greyii: A new instance of widespread vertebrate parthenogenesis. Evolution. 2003;57:2619–2627. doi: 10.1111/j.0014-3820.2003.tb01504.x. PubMed DOI

Lutes A.A., Baumann D.P., Neaves W.B., Baumann P. Laboratory synthesis of an independently reproducing vertebrate species. Proc. Natl. Acad. Sci. USA. 2011;108:9910–9915. doi: 10.1073/pnas.1102811108. PubMed DOI PMC

Vergun A.A., Martirosyan I.A., Semyenova S.K., Omelchenko A.V., Petrosyan V.G., Lazebny O.E., Tokarskaya O.N., Korchagin V.I., Ryskov A.P. Clonal diversity and clone formation in the parthenogenetic Caucasian rock lizard Darevskia dahli. PLoS ONE. 2014;9:e91674. doi: 10.1371/journal.pone.0091674. PubMed DOI PMC

Trifonov V.A., Paoletti A., Caputo Barucchi V., Kalinina T., O’Brien P.C.M., Ferguson-Smith M.A., Giovannotti M. Comparative chromosome painting and NOR distribution suggest a complex hybrid origin of triploid Lepidodactylus lugubris (Gekkonidae) PLoS ONE. 2015;10:e0132380. doi: 10.1371/journal.pone.0132380. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...