Cytogenetic Evidence for Sex Chromosomes and Karyotype Evolution in Anguimorphan Lizards
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
GAČR 19-19672S
Grantová Agentura České Republiky
PRIMUS/SCI/46
Univerzita Karlova v Praze
Research Centre Program (204069)
Univerzita Karlova v Praze
PubMed
34203198
PubMed Central
PMC8304200
DOI
10.3390/cells10071612
PII: cells10071612
Knihovny.cz E-resources
- Keywords
- CGH, FISH, evolution, karyotype, rDNA, sex chromosomes, telomeres,
- MeSH
- Cytogenetic Analysis * MeSH
- Phylogeny MeSH
- Lizards genetics MeSH
- Karyotype * MeSH
- Metaphase genetics MeSH
- Evolution, Molecular * MeSH
- Sex Chromosomes genetics MeSH
- DNA, Ribosomal genetics MeSH
- Telomere genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Ribosomal MeSH
Anguimorphan lizards are a morphologically variable group of squamate reptiles with a wide geographical distribution. In spite of their importance, they have been cytogenetically understudied. Here, we present the results of the cytogenetic examination of 23 species from five anguimorphan families (Anguidae, Helodermatidae, Shinisauridae, Varanidae and Xenosauridae). We applied both conventional (Giemsa staining and C-banding) and molecular cytogenetic methods (fluorescence in situ hybridization with probes for the telomeric motifs and rDNA loci, comparative genome hybridization), intending to describe the karyotypes of previously unstudied species, to uncover the sex determination mode, and to reveal the distribution of variability in cytogenetic characteristics among anguimorphan lizards. We documented that karyotypes are generally quite variable across anguimorphan lineages, with anguids being the most varying. However, the derived chromosome number of 2n = 40 exhibits a notable long-term evolutionary stasis in monitors. Differentiated ZZ/ZW sex chromosomes were documented in monitors and helodermatids, as well as in the anguids Abronia lythrochila, and preliminary also in Celestus warreni and Gerrhonotus liocephalus. Several other anguimorphan species have likely poorly differentiated sex chromosomes, which cannot be detected by the applied cytogenetic methods, although the presence of environmental sex determination cannot be excluded. In addition, we uncovered a rare case of spontaneous triploidy in a fully grown Varanus primordius.
See more in PubMed
Wilson M.A., Makova K.D. Genomic analyses of sex chromosome evolution. Rev. Genom. Hum. Genet. 2009;10:333–354. doi: 10.1146/annurev-genom-082908-150105. PubMed DOI
Bachtrog D., Mank J.E., Peichel C.L., Kirkpatrick M., Otto S.P., Ashman T.L., Hahn M.W., Kitano J., Mayrose I., Ming R., et al. Tree of sex consortium. Sex determination: Why so many ways of doing it? PLoS Biol. 2014;12:e1001899. doi: 10.1371/journal.pbio.1001899. PubMed DOI PMC
Pennell M.W., Mank J.E., Peichel C.L. Transitions in sex determination and sex chromosomes across vertebrate species. Mol. Ecol. 2018;27:3950–3963. doi: 10.1111/mec.14540. PubMed DOI PMC
Ohno S. Sex Chromosomes and Sex-Linked Genes. Springer; Berlin/Heidelberg, Germany: 1967.
Rice W.R. The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution. 1987;41:911–914. doi: 10.1111/j.1558-5646.1987.tb05864.x. PubMed DOI
Charlesworth B. The evolution of chromosomal sex determination and dosage compensation. Curr. Biol. 1996;6:149–162. doi: 10.1016/S0960-9822(02)00448-7. PubMed DOI
Kostmann A., Kratochvíl L., Rovatsos M. Poorly differentiated XX/XY sex chromosomes are widely shared across skink radiation. Proc. R. Soc. B. 2021;288:20202139. doi: 10.1098/rspb.2020.2139. PubMed DOI PMC
Rovatsos M., Johnson Pokorná M., Altmanová M., Kratochvíl L. Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: Furcifer): Differentiation of sex and neo-sex chromosomes. Sci. Rep. 2015;5:13196. doi: 10.1038/srep13196. PubMed DOI PMC
Rovatsos M., Altmanová M., Augstenová B., Mazzoleni S., Velenský P., Kratochvíl L. ZZ/ZW sex determination with multiple neo-sex chromosomes is common in Madagascan chameleons of the genus Furcifer (Reptilia: Chamaeleonidae) Genes. 2019;10:1020. doi: 10.3390/genes10121020. PubMed DOI PMC
Epplen J.T., McCarrey J.R., Sutou S., Ohno S. Base sequence of a cloned snake W-chromosome 65DNA fragment and identification of a male-specific putative mRNA in the mouse. Proc. Natl. Acad. Sci. USA. 1982;79:3798–3802. doi: 10.1073/pnas.79.12.3798. PubMed DOI PMC
Nanda I., Deubelbeiss C., Guttenbach M., Epplen J.T., Schmid M. Heterogeneities in the distribution of (GACA)n simple repeats in the karyotypes of primates and mouse. Hum. Genet. 1990;85:187–194. doi: 10.1007/BF00193194. PubMed DOI
Steinemann S., Steinemann M. Retroelements: Tools for sex chromosome evolution. Cytogenet. Genome Res. 2005;110:134–143. doi: 10.1159/000084945. PubMed DOI
Kejnovsky E., Hobza R., Cermak T., Kubat Z., Vyskot B. The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity. 2009;102:533–541. doi: 10.1038/hdy.2009.17. PubMed DOI
O’Meally D., Patel H.R., Stiglec R., Sarre S.D., Georges A., Marshall Graves J.A., Ezaz T. Non-homologous sex chromosomes of birds and snakes share repetitive sequences. Chromosome Res. 2010;18:787–800. doi: 10.1007/s10577-010-9152-9. PubMed DOI
Pokorná M., Kratochvíl L., Kejnovský E. Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox) BMC Genet. 2011;12:90. doi: 10.1186/1471-2156-12-90. PubMed DOI PMC
Matsubara K., Sarre S.D., Georges A., Matsuda Y., Graves J.A.M., Ezaz T. Highly differentiated ZW sex microchromosomes in the Australian Varanus species evolved through rapid amplification of repetitive sequences. PLoS ONE. 2014;9:e95226. doi: 10.1371/journal.pone.0095226. PubMed DOI PMC
Matsubara K., O’Meally D., Azad B., Georges A., Sarre S.D., Graves J.A.M., Matsuda Y., Ezaz T. Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma. 2016;125:111–123. doi: 10.1007/s00412-015-0531-z. PubMed DOI
Augstenová B., Mazzoleni S., Kratochvíl L., Rovatsos M. Evolutionary dynamics of the W chromosome in caenophidian snakes. Genes. 2018;9:5. doi: 10.3390/genes9010005. PubMed DOI PMC
Suwala G., Altmanová M., Mazzoleni S., Karameta E., Pafilis P., Kratochvíl L., Rovatsos M. Evolutionary variability of W-linked repetitive content in Lacertid lizards. Genes. 2020;11:531. doi: 10.3390/genes11050531. PubMed DOI PMC
Uetz P., Freed P., Hošek J., editors. The Reptile Database. [(accessed on 5 March 2021)];2020 Available online: http://www.reptile-database.org.
Pyron R.A., Burbrink F.T., Wiens J.J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 2013;13:1–54. doi: 10.1186/1471-2148-13-93. PubMed DOI PMC
Gorman G.C., Gress F. Chromosome cytology of four boid snakes and a varanid lizard, with comments on the cytosystematics of primitive snakes. Herpetologica. 1970;26:308–317.
Singh L., Sharma T., Ray-Chaudhu S.P. Chromosome numbers and sex chromosomes in few Indian species of amphibia and reptiles. Mamm. Chrom. News. 1970;11:91–94.
Singh L. Study of mitotic and meiotic chromosomes in seven species of lizards. Proc. Zool. Soc. 1974;27:57–79.
King M., King D. Chromosomal evolution in the lizard genus Varanus (Reptilia) Aust. J. Biol. Sci. 1975;28:89–108. doi: 10.1071/BI9750089. PubMed DOI
De Smet W.H.O. Description of the orsein stained karyotypes of 136 lizard species (Lacertilia, Reptilia) belonging to the families Teiidae, Scincidae, Lacertidae, Cordylidae and Varanidae (Autarchoglossa) Acta Zool. Pathol. Antverp. 1981;76:407–420.
King M., Mengden G.A., King D. A pericentric-inversion polymorphism and a ZZ/ZW sex-chromosome system in Varanus acanthurus Boulenger analysed by G- and C-banding and Ag staining. Genetica. 1982;58:39–45. doi: 10.1007/BF00056001. DOI
Porter C., Haiduk M., De Queiroz K. Evolution and phylogenetic significance of ribosomal gene location in chromosomes of squamate reptiles. Copeia. 1994;1994:302–313. doi: 10.2307/1446980. DOI
Srikulnath K., Uno Y., Nishida C., Matsuda Y. Karyotype evolution in monitor lizards: Cross-species chromosome mapping of cDNA reveals highly conserved synteny and gene order in the Toxicofera clade. Chromosome Res. 2013;21:805–819. doi: 10.1007/s10577-013-9398-0. PubMed DOI
Johnson Pokorná M., Altmanová M., Rovatsos M., Velenský P., Vodička R., Rehák I., Kratochvíl L. First description of the karyotype and sex chromosomes in the Komodo dragon (Varanus komodoensis) Cytogenet. Genome Res. 2016;148:284–291. doi: 10.1159/000447340. PubMed DOI
Patawang I., Tanomtong A. Constitutive heterochromatin observed on metaphase chromosome of Varanus bengalensis by C-banding and DAPI methods. Cytologia. 2017;82:1. doi: 10.1508/cytologia.82.1. DOI
Patawang I., Tanomtong A., Getlekha N., Phimphan S., Pinthong K., Neeratanaphan L. Standardized karyotype and idiogram of bengal monitor lizard, Varanus bengalensis (Squamata, Varanidae) Cytologia. 2017;82:75–82. doi: 10.1508/cytologia.82.75. DOI
Iannucci A., Altmanová M., Ciofi C., Ferguson-Smith M., Milan M., Pereira J.C., Pether J., Rehák I., Rovatsos M., Stanyon R., et al. Conserved sex chromosomes and karyotype evolution in monitor lizards (Varanidae) Heredity. 2019;123:215–227. doi: 10.1038/s41437-018-0179-6. PubMed DOI PMC
Rovatsos M., Rehák I., Velenský P., Kratochvíl L. Shared ancient sex chromosomes in varanids, beaded lizards, and alligator lizards. Mol. Biol. Evol. 2019;36:1113–1120. doi: 10.1093/molbev/msz024. PubMed DOI
Lind A.L., Lai Y.Y., Mostovoy Y., Holloway A.K., Iannucci A., Mak A.C.Y., Fondi M., Orlandini V., Eckalbar W.L., Milan M., et al. Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards. Nat. Ecol. Evol. 2019;3:1241–1252. doi: 10.1038/s41559-019-0945-8. PubMed DOI PMC
Johnson Pokorná M., Rovatsos M., Kratochvíl L. Sex chromosomes and karyotype of the (nearly) mythical creature, the Gila monster, Heloderma suspectum (Squamata: Helodermatidae) PLoS ONE. 2014;9:e104716. PubMed PMC
Bury R.B., Gorman G.C., Lynch J.F. Karyotypic data for five species of anguid lizards. Experientia. 1969;25:314–316. doi: 10.1007/BF02034418. PubMed DOI
Beçak M.L., Beçak W., Denaro L. Chromosome polymorphism, geographical variation and karyotypes in Sauria. Caryologia. 1972;25:313–326. doi: 10.1080/00087114.1972.10796485. DOI
Stamm B., Gorman G.C. Notes on the chromosomes of Anolis agassizi (Sauria: Iguanidae) and Diploglossus millepunctatus (Sauria: Anguidae) In: Graham J.B., editor. The Biological Investigation of Malpelo Island. Volume 176. Smithsonian Contributions to Zoology Colombia; Washington, DC, USA: 1975. pp. 52–56.
Bezy R.L., Gorman G.C., Kim Y.J., Wright J.W. Chromosomal and genetic divergence in the fossorial lizards of the family Anniellidae. Syst. Biol. 1977;26:57–71. doi: 10.1093/sysbio/26.1.57. DOI
Olmo E., Signorino G.G. Chromorep: A Reptile Chromosomes Database. [(accessed on 4 March 2021 )];2005 Available online: http://chromorep.univpm.it.
Mezzasalma M., Guarino F.M., Aprea G., Petraccioli A., Crottini A., Odierna G. Karyological evidence for diversification of Italian slow worm populations (Squamata, Anguidae) Comp. Cytogenet. 2013;7:217. doi: 10.3897/compcytogen.v7i3.5398. PubMed DOI PMC
Papenfuss T.J., Parham J.F. Four new species of California legless lizards (Anniella) Breviora. 2013;536:1–17. doi: 10.3099/MCZ10.1. DOI
Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Turtles of the genera Geoemyda and Pangshura (Testudines: Geoemydidae) lack differentiated sex chromosomes: The end of a 40-year error cascade for Pangshura. PeerJ. 2019;7:e6241. doi: 10.7717/peerj.6241. PubMed DOI PMC
Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI
Ijdo J.W., Baldini A., Ward D.C., Reeders S.T., Wells R.A. Origin of human chromosome 2: An ancestral telomere-telomere fusion. Proc. Natl. Acad. Sci. USA. 1991;88:9051–9055. doi: 10.1073/pnas.88.20.9051. PubMed DOI PMC
Endow S.A. Polytenization of the ribosomal genes on the X and Y chromosomes of Drosophila melanogaster. Genetics. 1982;100:375–385. doi: 10.1093/genetics/100.3.375. PubMed DOI PMC
Oguiura N., Ferrarezzi H., Batistic R.F. Cytogenetics and molecular data in snakes: A phylogenetic approach. Cytogenet. Genome Res. 2009;127:128–142. doi: 10.1159/000295789. PubMed DOI
Rovatsos M., Altmanová M., Johnson Pokorná M., Velenský P., Sanchez Baca A., Kratochvíl L. Evolution of karyotypes in chameleons. Genes. 2017;8:382. doi: 10.3390/genes8120382. PubMed DOI PMC
Gorman G. The Chromosomes of the Reptilia, a Cytotaxonomic Interpretation. In: Chiarelli A.B., Capanna E., editors. Cytotaxonomy and Vertebrate Evolution. Academic Press; Cambridge, MA, USA: 1973.
Gao J., Li Q., Wang Z., Zhou Y., Martelli P., Li F., Xiong Z., Wang J., Yang H., Zhang G. Sequencing, de novo assembling, and annotating the genome of the endangered Chinese crocodile lizard Shinisaurus crocodilurus. GigaScience. 2017;6:gix041. doi: 10.1093/gigascience/gix041. PubMed DOI PMC
Nanda I., Schrama D., Feichtinger W., Haaf T., Schartl M., Schmid M. Distribution of telomeric (TTAGGG)n sequences in avian chromosomes. Chromosoma. 2002;111:215–227. doi: 10.1007/s00412-002-0206-4. PubMed DOI
Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Sex is determined by XX/XY sex chromosomes in Australasian side-necked turtles (Testudines: Chelidae) Sci. Rep. 2020;10:4276. doi: 10.1038/s41598-020-61116-w. PubMed DOI PMC
Clemente L., Mazzoleni S., Pensabene Bellavia E., Augstenová B., Auer M., Praschag P., Protiva T., Velenský P., Wagner P., Fritz U., et al. Interstitial telomeric repeats are rare in turtles. Genes. 2020;11:657. doi: 10.3390/genes11060657. PubMed DOI PMC
Rovatsos M., Pokorná M.J., Kratochvíl L. Differentiation of sex chromosomes and karyotype characterisation in the dragon snake Xenodermus javanicus (Squamata: Xenodermatidae) Cytogenet. Genome Res. 2015;147:48–54. doi: 10.1159/000441646. PubMed DOI
Burt D.W. Origin and evolution of avian microchromosomes. Cytogenet. Genome Res. 2002;96:97–112. doi: 10.1159/000063018. PubMed DOI
International Chicken Genome Sequencing Consortium Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432:695–716. doi: 10.1038/nature03154. PubMed DOI
Backström N., Forstmeier W., Schielzeth H., Mellenius H., Nam K., Bolund E., Webster M.T., Öst T., Schneider M., Kempenaers B., et al. The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Res. 2010;20:485–495. doi: 10.1101/gr.101410.109. PubMed DOI PMC
Melek M., Shippen D.E. Chromosome healing: Spontaneous and programmed de novo telomere formation by telomerase. Bioessays. 1996;18:301–308. doi: 10.1002/bies.950180408. PubMed DOI
Shay J.R., Wright W.E. Telomeres and telomerase: Three decades of progress. Nat. Rev. Genet. 2019;20:299–309. doi: 10.1038/s41576-019-0099-1. PubMed DOI
Bolzán A.D. Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. Mutat. Res. 2017;773:51–65. doi: 10.1016/j.mrrev.2017.04.002. PubMed DOI
Bolzán A.D., Bianchi M.S. Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat. Res. 2006;612:189–214. doi: 10.1016/j.mrrev.2005.12.003. PubMed DOI
Ruiz-Herrera A., Nergadze S.G., Santagostino M., Giulotto E. Telomeric repeats far from the ends: Mechanisms of origin and role in evolution. Cytogenet. Genome Res. 2008;122:219–228. doi: 10.1159/000167807. PubMed DOI
Birchler J.A., Presting G.G. Retrotransposon insertion targeting: A mechanism for homogenization of centromere sequences on nonhomologous chromosomes. Genes. Dev. 2012;26:638–640. doi: 10.1101/gad.191049.112. PubMed DOI PMC
Rovatsos M.T., Marchal J.A., Romero-Fernández I., Fernández F.J., Giagia-Athanosopoulou E.B., Sánchez A. Rapid, independent, and extensive amplification of telomeric repeats in pericen-tromeric regions in karyotypes of arvicoline rodents. Chromosome Res. 2011;19:869–882. doi: 10.1007/s10577-011-9242-3. PubMed DOI
Rovatsos M., Marchal J.A., Giagia-Athanasopoulou E., Sánchez A. Molecular composition of heterochromatin and its contribution to chromosome variation in Microtus thomasi/Microtus atticus species complex. Genes. 2021;12:807. doi: 10.3390/genes12060807. PubMed DOI PMC
Augstenová B., Mazzoleni S., Kostmann A., Altmanová M., Frynta D., Kratochvíl L., Rovatsos M. Cytogenetic analysis did not reveal differentiated sex chromosomes in ten species of boas and pythons (Reptilia: Serpentes) Genes. 2019;10:934. doi: 10.3390/genes10110934. PubMed DOI PMC
Gvoždík V., Benkovský N., Crottini A., Bellati A., Moravec J., Romano A., Sacchi R., Jandzik D. An ancient lineage of slow worms, genus Anguis (Squamata: Anguidae), survived in the Italian Peninsula. Mol. Phylogenet. Evol. 2013;69:1077–1092. doi: 10.1016/j.ympev.2013.05.004. PubMed DOI
Lin L.-H., Wiens J.J. Comparing macroecological patterns across continents: Evolution of climatic niche breadth in varanid lizards. Ecography. 2017;40:960–970. doi: 10.1111/ecog.02343. DOI
De Oca A.N.M., Barley A.J., Meza-Lázaro R.N., García-Vázquez U.O., Zamora-Abrego J.G., Thomson R.C., Leaché A.D. Phylogenomics and species delimitation in the knob-scaled lizards of the genus Xenosaurus (Squamata: Xenosauridae) using ddRADseq data reveal a substantial underestimation of diversity. Mol. Phylogenet. Evol. 2017;106:241–253. doi: 10.1016/j.ympev.2016.09.001. PubMed DOI
Brennan I.G., Lemmon A.R., Lemmon E.M., Portik D.M., Weijola V., Welton L., Donnellan S.C., Keogh J.S. Phylogenomics of monitor lizards and the role of competition in dictating body size disparity. Syst. Biol. 2021;70:120–132. doi: 10.1093/sysbio/syaa046. PubMed DOI
Porter C.A., Hamilton M.J., Sites J.W., Jr., Baker R.J. Location of ribosomal DNA in chromosomes of squamate reptiles: Systematic and evolutionary implications. Herpetologica. 1991;47:271–280.
Stults D.M., Killen M.W., Pierce H.H., Pierce A.J. Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res. 2008;18:13–18. doi: 10.1101/gr.6858507. PubMed DOI PMC
Altmanová M., Rovatsos M., Kratochvíl L., Johnson Pokorná M. Minute Y chromosomes and karyotype evolution in Madagascan iguanas (Squamata: Iguania: Opluridae) Biol. J. Linn. Soc. 2016;118:618–633. doi: 10.1111/bij.12751. DOI
Sochorová J., Garcia S., Gálvez F., Symonová R., Kovařík A. Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma. 2017;127:141–150. doi: 10.1007/s00412-017-0651-8. PubMed DOI PMC
Mazzoleni S., Rovatsos M., Schillaci O., Dumas F. Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes. Comp. Cytogenet. 2018;12:27–40. doi: 10.3897/compcytogen.v12i1.19381. PubMed DOI PMC
Micolino R., Cristiano M.P., Travenzoli N.M., Lopes D.M., Cardoso D.C. Chromosomal dynamics in space and time: Evolutionary history of Mycetophylax ants across past climatic changes in the Brazilian Atlantic coast. Sci. Rep. 2019;9:18800. doi: 10.1038/s41598-019-55135-5. PubMed DOI PMC
Degrandi T.M., Gunski R.J., Garnero A.D.V., Oliveira E.H.C., Kretschmer R., Souza M.S. Barcellos, S.A.; Hass, I. The distribution of 45S rDNA sites in bird chromosomes suggests multiple evolutionary histories. Genet. Mol. Biol. 2020;43:e20180331. doi: 10.1590/1678-4685-gmb-2018-0331. PubMed DOI PMC
Literman R., Badenhorst D., Valenzuela N. qPCR-based molecular sexing by copy number variation in r RNA genes and its utility for sex identification in soft-shell turtles. Methods Ecol. Evol. 2014;5:872–880. doi: 10.1111/2041-210X.12228. DOI
Literman R., Radhakrishnan S., Tamplin J., Burke R., Dresser C., Valenzuela N. Development of sexing primers in Glyptemys insculpta and Apalone spinifera turtles uncovers an XX/XY sex-determining system in the critically-endangered bog turtle Glyptemys muhlenbergii. Conserv. Genet. Resour. 2017;9:651–658. doi: 10.1007/s12686-017-0711-7. DOI
Rovatsos M., Praschag P., Fritz U., Kratochvíl L. Stable Cretaceous sex chromosomes enable molecular sexing in softshell turtles (Testudines: Trionychidae) Sci. Rep. 2017;7:42150. doi: 10.1038/srep42150. PubMed DOI PMC
Kostmann A., Kratochvíl L., Rovatsos M. First report of sex chromosomes in plated lizards (Squamata: Gerrhosauridae) Sex. Dev. 2021:1–6. doi: 10.1159/000513764. PubMed DOI
Zurita F., Sánchez A., Burgos M., Jiménez R., de la Guardia R.D. Interchromosomal, intercellular and interindividual variability of NORs studied with silver staining and in situ hybridization. Heredity. 1997;78:229–234. doi: 10.1038/hdy.1997.36. PubMed DOI
Zurita F., Jimenez R., Burgos M., de La Guardia R.D. Sequential silver staining and in situ hybridization reveal a direct association between rDNA levels and the expression of homologous nucleolar organizing regions: A hypothesis for NOR structure and function. J. Cell Sci. 1998;111:1433–1439. doi: 10.1242/jcs.111.10.1433. PubMed DOI
Nirchio M., Oliveira C., Ferreira I.A., Granado A., Ron E. Extensive polymorphism and chromosomal characteristics of ribosomal DNA in the characid fish Triportheus venezuelensis (Characiformes, Characidae) Genet. Mol. Biol. 2007;30:25–30. doi: 10.1590/S1415-47572007000100007. DOI
Miller L., Knowland J. Reduction of ribosomal RNA synthesis and ribosomal RNA genes in a mutant of Xenopus laevis which organizes only a partial nucleolus: II. The number of ribosomal RNA genes in animals of different nucleolar types. J. Mol. Biol. 1970;53:329–338. doi: 10.1016/0022-2836(70)90069-0. PubMed DOI
Gibbons J.G., Branco A.T., Godinho S.A., Yu S., Lemos B. Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes. Proc. Natl. Acad. Sci. USA. 2015;112:2485–2490. doi: 10.1073/pnas.1416878112. PubMed DOI PMC
Xu B., Li H., Perry J.M., Singh V.P., Unruh J., Yu Z., Zakari M., McDowell W., Li L., Gerton J.L. Ribosomal DNA copy number loss and sequence variation in cancer. PLoS Genet. 2017;13:e1006771. doi: 10.1371/journal.pgen.1006771. PubMed DOI PMC
Kobayashi T. How does genome instability affect lifespan? Roles of rDNA and telomeres. Genes Cells. 2011;16:617–624. doi: 10.1111/j.1365-2443.2011.01519.x. PubMed DOI PMC
Rovatsos M., Augstenová B., Altmanová M., Sloboda M., Kodym P., Kratochvíl L. Triploid colubrid snake provides insight into the mechanism of sex determination in advanced snakes. Sex. Dev. 2018;12:251–255. doi: 10.1159/000490124. PubMed DOI
Tiersch T.R., Figiel C.R. A triploid snake. Copeia. 1991;1991:838–841. doi: 10.2307/1446412. DOI
Peters G. Die intragenerischen Gruppen und die Phylogenese der Schmetterlingsagamen (Agamidae: Leiolepis) Zool. Jahrb. Syst. 1971;98:11–130.
Moritz C. Parthenogenesis in the endemic Australian lizard Heteronotia binoei (Gekkonidae) Science. 1983;220:735–737. doi: 10.1126/science.220.4598.735. PubMed DOI
Moritz C., Case T.J., Bolger D.T., Donnellan S. Genetic diversity and the history of pacific island house geckos (Hemidactylus and Lepidodactylus) Biol. J. Linn. Soc. 1993;48:113–133. doi: 10.1111/j.1095-8312.1993.tb00882.x. DOI
Darevsky I.S., Kupriyanova L.A., Roshchin V.V. A new all-female triploid species of gecko and karyological data on the bisexual Hemidactylus frenatus from Vietnam. J. Herpetol. 1984;18:277–284. doi: 10.2307/1564081. DOI
Wynn A.H., Cole C.J., Gardner A.L. Apparent triploidy in the unisexual Brahminy blind snake, Ramphotyphlops braminus. Am. Mus. Novit. 1987;2868:1–7.
Adams M., Foster R., Hutchinson M.N., Hutchinson R.G., Donnellan S.C. The Australian scincid lizard Menetia greyii: A new instance of widespread vertebrate parthenogenesis. Evolution. 2003;57:2619–2627. doi: 10.1111/j.0014-3820.2003.tb01504.x. PubMed DOI
Lutes A.A., Baumann D.P., Neaves W.B., Baumann P. Laboratory synthesis of an independently reproducing vertebrate species. Proc. Natl. Acad. Sci. USA. 2011;108:9910–9915. doi: 10.1073/pnas.1102811108. PubMed DOI PMC
Vergun A.A., Martirosyan I.A., Semyenova S.K., Omelchenko A.V., Petrosyan V.G., Lazebny O.E., Tokarskaya O.N., Korchagin V.I., Ryskov A.P. Clonal diversity and clone formation in the parthenogenetic Caucasian rock lizard Darevskia dahli. PLoS ONE. 2014;9:e91674. doi: 10.1371/journal.pone.0091674. PubMed DOI PMC
Trifonov V.A., Paoletti A., Caputo Barucchi V., Kalinina T., O’Brien P.C.M., Ferguson-Smith M.A., Giovannotti M. Comparative chromosome painting and NOR distribution suggest a complex hybrid origin of triploid Lepidodactylus lugubris (Gekkonidae) PLoS ONE. 2015;10:e0132380. doi: 10.1371/journal.pone.0132380. PubMed DOI PMC