• This record comes from PubMed

Cell differentiation, aging, and death in spatially organized yeast communities: mechanisms and consequences

. 2025 Mar 29 ; () : . [epub] 20250329

Status Publisher Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Review

Links

PubMed 40158069
DOI 10.1038/s41418-025-01485-9
PII: 10.1038/s41418-025-01485-9
Knihovny.cz E-resources

Cell death is a natural part of the development of multicellular organisms and is central to their physiological and pathological states. However, the existence of regulated cell death in unicellular microorganisms, including eukaryotic and prokaryotic microbes, has been a topic of debate. One reason for the continued debate is the lack of obvious benefit from cell death in the context of a single cell. However, unicellularity is relative, as most of these microbes dwell in communities of varying complexities, often with complicated spatial organization. In these spatially organized microbial communities, such as yeast and bacterial colonies and biofilms growing on solid surfaces, cells differentiate into specialized types, and the whole community often behaves like a simple multicellular organism. As these communities develop and age, cell death appears to offer benefits to the community as a whole. This review explores the potential roles of cell death in spatially organized communities of yeasts and draws analogies to similar communities of bacteria. The natural dying processes in microbial cell communities are only partially understood and may result from suicidal death genes, (self-)sabotage (without death effectors), or from non-autonomous mechanisms driven by interactions with other differentiated cells. We focus on processes occurring during the stratification of yeast colonies, the formation of the extracellular matrix in biofilms, and discuss potential roles of cell death in shaping the organization, differentiation, and overall physiology of these microbial structures.

See more in PubMed

Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011;147:742–58. PubMed DOI PMC

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ. 2018;25:486–541. PubMed DOI PMC

Kulkarni M, Hardwick JM. Programmed cell death in unicellular versus multicellular organisms. Annu Rev Genet. 2023;57:435–59. PubMed DOI PMC

Vachova L, Palkova Z. Caspases in yeast apoptosis-like death: facts and artefacts. FEMS Yeast Res. 2007;7:12–21. PubMed DOI

Lee RE, Brunette S, Puente LG, Megeney LA. Metacaspase Yca1 is required for clearance of insoluble protein aggregates. Proc Natl Acad Sci USA. 2010;107:13348–53. PubMed DOI PMC

Shrestha A, Brunette S, Stanford WL, Megeney LA. The metacaspase Yca1 maintains proteostasis through multiple interactions with the ubiquitin system. Cell Discov. 2019;5:6. PubMed DOI PMC

Stolp ZD, Kulkarni M, Liu Y, Zhu C, Jalisi A, Lin S, et al. Yeast cell death pathway requiring AP-3 vesicle trafficking leads to vacuole/lysosome membrane permeabilization. Cell Rep. 2022;39:110647. PubMed DOI PMC

Kim H, Kim A, Cunningham KW. Vacuolar H+-ATPase (V-ATPase) promotes vacuolar membrane permeabilization and nonapoptotic death in stressed yeast. J Biol Chem. 2012;287:19029–39. PubMed DOI PMC

Pereira C, Chaves S, Alves S, Salin B, Camougrand N, Manon S, et al. Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. Mol Microbiol. 2010;76:1398–410. PubMed DOI

Chaves SR, Rego A, Martins VM, Santos-Pereira C, Sousa MJ, Corte-Real M. Regulation of cell death induced by acetic acid in yeasts. Front Cell Dev Biol. 2021;9:642375. PubMed DOI PMC

Durand PM, Ramsey G. The concepts and origins of cell mortality. Hist Philos Life Sci. 2023;45:23. PubMed DOI PMC

Lohr JN, Galimov ER, Gems D. Does senescence promote fitness in Caenorhabditis elegans by causing death? Ageing Res Rev. 2019;50:58–71. PubMed DOI PMC

Pepper JW, Shelton DE, Rashidi A, Asfaha SM, Durand PM. Are internal, death-promoting mechanisms ever adaptive? J Phylogen Evolut Biol. 2013;1:113.

Bridier A, Piard JC, Pandin C, Labarthe S, Dubois-Brissonnet F, Briandet R. Spatial organization plasticity as an adaptive driver of surface microbial communities. Front Microbiol. 2017;8:1364. PubMed DOI PMC

Jo J, Price-Whelan A, Dietrich LEP. Gradients and consequences of heterogeneity in biofilms. Nat Rev Microbiol. 2022;20:593–607. PubMed DOI PMC

Munoz-Dorado J, Marcos-Torres FJ, Garcia-Bravo E, Moraleda-Munoz A, Perez J. Myxobacteria: Moving, killing, feeding, and surviving together. Front Microbiol. 2016;7:781. PubMed DOI PMC

Palkova Z, Vachova L. Yeast cell differentiation: lessons from pathogenic and non-pathogenic yeasts. Semin Cell Dev Biol. 2016;57:110–9. PubMed DOI

Palkova Z, Vachova L. Spatially structured yeast communities: understanding structure formation and regulation with omics tools. Comput Struct Biotechnol J. 2021;19:5613–21. PubMed DOI PMC

Tarnita CE. The ecology and evolution of social behavior in microbes. J Exp Biol. 2017;220:18–24. PubMed DOI

Vachova L, Palkova Z. How structured yeast multicellular communities live, age and die? FEMS Yeast Res. 2018;18:foy033. DOI

van Gestel J, Vlamakis H, Kolter R. Division of labor in biofilms: the ecology of cell differentiation. Microbiol Spectr. 2015;3:MB-0002–2014.

Evans CR, Kempes CP, Price-Whelan A, Dietrich LEP. Metabolic heterogeneity and cross-feeding in bacterial multicellular systems. Trends Microbiol. 2020;28:732–43. PubMed DOI PMC

Honigberg SM. Cell signals, cell contacts, and the organization of yeast communities. Eukaryot Cell. 2011;10:466–73. PubMed DOI PMC

McCormick JR, Flardh K. Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev. 2012;36:206–31. PubMed DOI

Rousset F, Sorek R. The evolutionary success of regulated cell death in bacterial immunity. Curr Opin Microbiol. 2023;74:102312. PubMed DOI

Nguyen PV, Hlavacek O, Marsikova J, Vachova L, Palkova Z. Cyc8p and Tup1p transcription regulators antagonistically regulate Flo11p expression and complexity of yeast colony biofilms. PLoS Genet. 2018;14:e1007495. PubMed DOI PMC

Vachova L, Stovicek V, Hlavacek O, Chernyavskiy O, Stepanek L, Kubinova L, et al. Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies. J Cell Biol. 2011;194:679–87. PubMed DOI PMC

Van Nguyen P, Plocek V, Vachova L, Palkova Z. Glucose, Cyc8p and Tup1p regulate biofilm formation and dispersal in wild Saccharomyces cerevisiae. NPJ Biofilms Microbiomes. 2020;6:7. PubMed DOI PMC

Granek JA, Magwene PM. Environmental and genetic determinants of colony morphology in yeast. PLoS Genet. 2010;6:e1000823. PubMed DOI PMC

Kuthan M, Devaux F, Janderova B, Slaninova I, Jacq C, Palkova Z. Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol. 2003;47:745–54. PubMed DOI

Aguilar C, Vlamakis H, Losick R, Kolter R. Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol. 2007;10:638–43. PubMed DOI PMC

Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA. 2001;98:11621–6. PubMed DOI PMC

Stovicek V, Vachova L, Kuthan M, Palkova Z. General factors important for the formation of structured biofilm-like yeast colonies. Fungal Genet Biol. 2010;47:1012–22. PubMed DOI

Veening JW, Kuipers OP, Brul S, Hellingwerf KJ, Kort R. Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis. J Bacteriol. 2006;188:3099–109. PubMed DOI PMC

Stovicek V, Vachova L, Begany M, Wilkinson D, Palkova Z. Global changes in gene expression associated with phenotypic switching of wild yeast. BMC Genomics. 2014;15:136. PubMed DOI PMC

Holmes DL, Lancaster AK, Lindquist S, Halfmann R. Heritable remodeling of yeast multicellularity by an environmentally responsive prion. Cell. 2013;153:153–65. PubMed DOI PMC

Tan Z, Hays M, Cromie GA, Jeffery EW, Scott AC, Ahyong V, et al. Aneuploidy underlies a multicellular phenotypic switch. Proc Natl Acad Sci USA. 2013;110:12367–72. PubMed DOI PMC

Gibbons JG, Rinker DC. The genomics of microbial domestication in the fermented food environment. Curr Opin Genet Dev. 2015;35:1–8. PubMed DOI PMC

Vachova L, Chernyavskiy O, Strachotova D, Bianchini P, Burdikova Z, Fercikova I, et al. Architecture of developing multicellular yeast colony: spatio-temporal expression of Ato1p ammonium exporter. Environ Microbiol. 2009;11:1866–77. PubMed DOI

Plocek V, Vachova L, Stovicek V, Palkova Z. Cell distribution within yeast colonies and colony biofilms: How structure develops. Int J Mol Sci. 2020;21:3873. PubMed DOI PMC

Cap M, Stepanek L, Harant K, Vachova L, Palkova Z. Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism. Mol Cell. 2012;46:436–48. PubMed DOI

Palkova Z, Devaux F, Ricicova M, Minarikova L, Le Crom S, Jacq C. Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell. 2002;13:3901–14. PubMed DOI PMC

Podholova K, Plocek V, Resetarova S, Kucerova H, Hlavacek O, Vachova L, et al. Divergent branches of mitochondrial signaling regulate specific genes and the viability of specialized cell types of differentiated yeast colonies. Oncotarget. 2016;7:15299–314. PubMed DOI PMC

Vachova L, Hatakova L, Cap M, Pokorna M, Palkova Z. Rapidly developing yeast microcolonies differentiate in a similar way to aging giant colonies. Oxid Med Cell Longev. 2013;2013:102485. PubMed DOI PMC

Vachova L, Kucerova H, Devaux F, Ulehlova M, Palkova Z. Metabolic diversification of cells during the development of yeast colonies. Environ Microbiol. 2009;11:494–504. PubMed DOI

Vachova L, Cap M, Palkova Z. Yeast colonies: a model for studies of aging, environmental adaptation, and longevity. Oxid Med Cell Longev. 2012;2012:601836. PubMed DOI PMC

Vachova L, Palkova Z. Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. J Cell Biol. 2005;169:711–7. PubMed DOI PMC

Marsikova J, Pavlickova M, Wilkinson D, Vachova L, Hlavacek O, Hatakova L, et al. The Whi2p-Psr1p/Psr2p complex regulates interference competition and expansion of cells with competitive advantage in yeast colonies. Proc Natl Acad Sci USA. 2020;117:15123–31. PubMed DOI PMC

Vachova L, Plocek V, Marsikova J, Resetarova S, Hatakova L, Palkova Z. Differential stability of Gcn4p controls its cell-specific activity in differentiated yeast colonies. mBio. 2024;15:e0068924. PubMed DOI

Plocek V, Fadrhonc K, Marsikova J, Vachova L, Pokorna A, Hlavacek O, et al. Mitochondrial retrograde signaling contributes to metabolic differentiation in yeast colonies. Int J Mol Sci. 2021;22:5597. PubMed DOI PMC

Cap M, Vachova L, Palkova Z. Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis. Cell Cycle. 2015;14:3488–97. PubMed DOI PMC

Cap M, Palkova Z. The characteristics of differentiated yeast subpopulations depend on their lifestyle and available nutrients. Sci Rep. 2024;14:3681. PubMed DOI PMC

Wilkinson D, Marsikova J, Hlavacek O, Gilfillan GD, Jezkova E, Aalokken R, et al. Transcriptome remodeling of differentiated cells during chronological ageing of yeast colonies: new insights into metabolic differentiation. Oxid Med Cell Longev. 2018;2018:4932905. PubMed DOI PMC

Hartwell LH. Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res. 1971;69:265–76. PubMed DOI

Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herlan M, et al. A caspase-related protease regulates apoptosis in yeast. Mol Cell. 2002;9:911–7. PubMed DOI

Wissing S, Ludovico P, Herker E, Buttner S, Engelhardt SM, Decker T, et al. An AIF orthologue regulates apoptosis in yeast. J Cell Biol. 2004;166:969–74. PubMed DOI PMC

DeBerardinis RJ, Cheng T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29:313–24. PubMed DOI

Guaragnella N, Coyne LP, Chen XJ, Giannattasio S. Mitochondria-cytosol-nucleus crosstalk: learning from Saccharomyces cerevisiae. FEMS Yeast Res. 2018;18:foy088. PubMed DOI PMC

Jazwinski SM. The retrograde response: a conserved compensatory reaction to damage from within and from without. Prog Mol Biol Transl Sci. 2014;127:133–54. PubMed DOI PMC

Liu Z, Butow RA. Mitochondrial retrograde signaling. Annu Rev Genet. 2006;40:159–85. PubMed DOI

Green DR. Cell death: revisiting the roads to ruin. Dev Cell. 2024;59:2523–31. PubMed DOI

Eroglu M, Derry WB. Your neighbours matter—non-autonomous control of apoptosis in development and disease. Cell Death Differ. 2016;23:1110–8. PubMed DOI PMC

Palkova Z, Forstova J. Yeast colonies synchronise their growth and development. J Cell Sci. 2000;113:1923–8. PubMed DOI

Ricicova M, Kucerova H, Vachova L, Palkova Z. Association of putative ammonium exporters Ato with detergent-resistant compartments of plasma membrane during yeast colony development: pH affects Ato1p localisation in patches. Biochim Biophys Acta. 2007;1768:1170–8. PubMed DOI

Santos J, Leao C, Sousa MJ. Ammonium-dependent shortening of CLS in yeast cells starved for essential amino acids is determined by the specific amino acid deprived, through different signaling pathways. Oxid Med Cell Longev. 2013;2013:161986. PubMed DOI PMC

Santos J, Sousa MJ, Leao C. Ammonium is toxic for aging yeast cells, inducing death and shortening of the chronological lifespan. PLoS One. 2012;7:e37090. PubMed DOI PMC

Piccirillo S, Kapros T, Honigberg SM. Phenotypic plasticity within yeast colonies: differential partitioning of cell fates. Curr Genet. 2016;62:467–73. PubMed DOI PMC

Piccirillo S, McCune AH, Dedert SR, Kempf CG, Jimenez B, Solst SR, et al. How boundaries form: Linked nonautonomous feedback loops regulate pattern formation in yeast colonies. Genetics. 2019;213:1373–86. PubMed DOI PMC

Piccirillo S, Morales R, White MG, Smith K, Kapros T, Honigberg SM. Cell differentiation and spatial organization in yeast colonies: Role of cell-wall integrity pathway. Genetics. 2015;201:1427–38. PubMed DOI PMC

Piccirillo S, White MG, Murphy JC, Law DJ, Honigberg SM. The Rim101p/PacC pathway and alkaline pH regulate pattern formation in yeast colonies. Genetics. 2010;184:707–16. PubMed DOI PMC

Kaiser D, Robinson M, Kroos L. Myxobacteria, polarity, and multicellular morphogenesis. CSH Perspect Biol. 2010;2:a000380.

Shimkets LJ. Social and developmental biology of the myxobacteria. Microbiol Rev. 1990;54:473–501. PubMed DOI PMC

Nariya H, Inouye M. MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell. 2008;132:55–66. PubMed DOI

Wireman JW, Dworkin M. Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J Bacteriol. 1977;129:798–802. PubMed DOI PMC

Bretl DJ, Kirby JR. Molecular mechanisms of signaling in Myxococcus xanthus development. J Mol Biol. 2016;428:3805–30. PubMed DOI

Kroos L. Highly Signal-responsive gene regulatory network governing Myxococcus development. Trends Genet. 2017;33:3–15. PubMed DOI

Mercier R, Mignot T. Regulations governing the multicellular lifestyle of Myxococcus xanthus. Curr Opin Microbiol. 2016;34:104–10. PubMed DOI

Janssen GR, Dworkin M. Cell-cell interactions in developmental lysis of Myxococcus xanthus. Dev Biol. 1985;112:194–202. PubMed DOI

Popp PF, Mascher T. Coordinated cell death in isogenic bacterial populations: Sacrificing some for the benefit of many? J Mol Biol. 2019;431:4656–69. PubMed DOI

Gelvan I, Varon M, Rosenberg E. Cell-density-dependent killing of Myxococcus xanthus by autocide AMV. J Bacteriol. 1987;169:844–8. PubMed DOI PMC

Varon M, Cohen S, Rosenberg E. Autocides produced by Myxococcus xanthus. J Bacteriol. 1984;160:1146–50. PubMed DOI PMC

Boynton TO, McMurry JL, Shimkets LJ. Characterization of Myxococcus xanthus MazF and implications for a new point of regulation. Mol Microbiol. 2013;87:1267–76. PubMed DOI PMC

Miguelez EM, Hardisson C, Manzanal MB. Hyphal death during colony development in Streptomyces antibioticus: morphological evidence for the existence of a process of cell deletion in a multicellular prokaryote. J Cell Biol. 1999;145:515–25. PubMed DOI PMC

Claessen D, Rozen DE, Kuipers OP, Sogaard-Andersen L, van Wezel GP. Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat Rev Microbiol. 2014;12:115–24. PubMed DOI

Mendez C, Brana AF, Manzanal MB, Hardisson C. Role of substrate mycelium in colony development in Streptomyces. Can J Microbiol. 1985;31:446–50. PubMed DOI

Manteca A, Mader U, Connolly BA, Sanchez J. A proteomic analysis of Streptomyces coelicolor programmed cell death. Proteomics. 2006;6:6008–22. PubMed DOI

Filippova SN, Vinogradova KA. Programmed cell death as one of the stages of streptomycete differentiation. Microbiology. 2017;86:439–54. DOI

Yague P, Lopez-Garcia MT, Rioseras B, Sanchez J, Manteca A. New insights on the development of Streptomyces and their relationships with secondary metabolite production. Curr Trends Microbiol. 2012;8:65–73. PubMed PMC

Panlilio H, Rice CV. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms. Biotechnol Bioeng. 2021;118:2129–41. PubMed DOI PMC

Pujol C, Daniels KJ, Soll DR. Comparison of switching and biofilm formation between MTL-homozygous strains of Candida albicans and Candida dubliniensis. Eukaryot Cell. 2015;14:1186–202. PubMed DOI PMC

Soll DR, Daniels KJ. Plasticity of Candida albicans biofilms. Microbiol Mol Biol Rev. 2016;80:565–95. PubMed DOI PMC

Wilking JN, Zaburdaev V, De Volder M, Losick R, Brenner MP, Weitz DA. Liquid transport facilitated by channels in Bacillus subtilis biofilms. Proc Natl Acad Sci USA. 2013;110:848–52. PubMed DOI

Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J, et al. Novel entries in a fungal biofilm matrix encyclopedia. mBio. 2014;5:e01333–01314. PubMed DOI PMC

Sarkar S. Release mechanisms and molecular interactions of Pseudomonas aeruginosa extracellular DNA. Appl Microbiol Biotechnol. 2020;104:6549–64. PubMed DOI

Secchi E, Savorana G, Vitale A, Eberl L, Stocker R, Rusconi R. The structural role of bacterial eDNA in the formation of biofilm streamers. Proc Natl Acad Sci USA. 2022;119:e2113723119. PubMed DOI PMC

Campoccia D, Montanaro L, Arciola CR. Tracing the origins of extracellular DNA in bacterial biofilms: story of death and predation to community benefit. Biofouling. 2021;37:1022–39. PubMed DOI

Gancedo C, Flores CL, Gancedo JM. The expanding landscape of moonlighting proteins in yeasts. Microbiol Mol Biol Rev. 2016;80:765–77. PubMed DOI PMC

Satala D, Karkowska-Kuleta J, Zelazna A, Rapala-Kozik M, Kozik A. Moonlighting proteins at the Candidal cell surface. Microorganisms. 2020;8:1046. PubMed DOI PMC

Nunez-Beltran A, Lopez-Romero E, Cuellar-Cruz M. Identification of proteins involved in the adhesion of Candida species to different medical devices. Micro Pathog. 2017;107:293–303. DOI

Silva RC, Padovan AC, Pimenta DC, Ferreira RC, da Silva CV, Briones MR. Extracellular enolase of Candida albicans is involved in colonization of mammalian intestinal epithelium. Front Cell Infect Microbiol. 2014;4:66. PubMed DOI PMC

Jarros IC, Veiga FF, Correa JL, Barros ILE, Gadelha MC, Voidaleski MF, et al. Microbiological and virulence aspects of Rhodotorula mucilaginosa. EXCLI J. 2020;19:687–704. PubMed PMC

Kasai M, Francesconi A, Petraitiene R, Petraitis V, Kelaher AM, Kim HS, et al. Use of quantitative real-time PCR to study the kinetics of extracellular DNA released from Candida albicans, with implications for diagnosis of invasive Candidiasis. J Clin Microbiol. 2006;44:143–50. PubMed DOI PMC

Martins M, Uppuluri P, Thomas DP, Cleary IA, Henriques M, Lopez-Ribot JL, et al. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia. 2010;169:323–31. PubMed DOI

Bose JL, Lehman MK, Fey PD, Bayles KW. Contribution of the Staphylococcus aureus Atl AM and GL murein hydrolase activities in cell division, autolysis, and biofilm formation. PLoS One. 2012;7:e42244. PubMed DOI PMC

Jung CJ, Hsu RB, Shun CT, Hsu CC, Chia JS. AtlA mediates extracellular DNA release, which contributes to Streptococcus mutans biofilm formation in an experimental rat model of infective endocarditis. Infect Immun. 2017;85:e00252–17. PubMed DOI PMC

Nagasawa R, Yamamoto T, Utada AS, Nomura N, Obana N. Competence-stimulating-peptide-dependent localized cell death and extracellular DNA production in Streptococcus mutans biofilms. Appl Environ Microbiol. 2020;86:e02080–20. PubMed DOI PMC

Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, Molin S, et al. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology. 2007;153:2083–92. PubMed DOI

Thomas VC, Hiromasa Y, Harms N, Thurlow L, Tomich J, Hancock LE. A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of Enterococcus faecalis. Mol Microbiol. 2009;72:1022–36. PubMed DOI PMC

Zeng X, Zou Y, Zheng J, Qiu S, Liu L, Wei C. Quorum sensing-mediated microbial interactions: Mechanisms, applications, challenges and perspectives. Microbiol Res. 2023;273:127414. PubMed DOI

Hazan R, Que YA, Maura D, Strobel B, Majcherczyk PA, Hopper LR, et al. Auto Poisoning of the respiratory chain by a quorum-sensing-regulated molecule favors biofilm formation and antibiotic tolerance. Curr Biol. 2016;26:195–206. PubMed DOI PMC

Van Ark G, Berden JA. Binding of HQNO to beef-heart sub-mitochondrial particles. Biochim Biophys Acta. 1977;459:119–27. PubMed DOI

Armstrong JS. The role of the mitochondrial permeability transition in cell death. Mitochondrion. 2006;6:225–34. PubMed DOI

Quarato G, Llambi F, Guy CS, Min J, Actis M, Sun H, et al. Ca(2+)-mediated mitochondrial inner membrane permeabilization induces cell death independently of Bax and Bak. Cell Death Differ. 2022;29:1318–34. PubMed DOI PMC

Camarillo-Marquez O, Cordova-Alcantara IM, Hernandez-Rodriguez CH, Garcia-Perez BE, Martinez-Rivera MA, Rodriguez-Tovar AV. Antagonistic interaction of Staphylococcus aureus toward Candida glabrata during in vitro biofilm formation is caused by an apoptotic mechanism. Front Microbiol. 2018;9:2031. PubMed DOI PMC

Vila T, Kong EF, Montelongo-Jauregui D, Van Dijck P, Shetty AC, McCracken C, et al. Therapeutic implications of C. albicans-S. aureus mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence. 2021;12:835–51. PubMed DOI PMC

Groicher KH, Firek BA, Fujimoto DF, Bayles KW. The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. J Bacteriol. 2000;182:1794–801. PubMed DOI PMC

Rice KC, Bayles KW. Molecular control of bacterial death and lysis. Microbiol Mol Biol Rev. 2008;72:85–109. PubMed DOI PMC

Endres JL, Chaudhari SS, Zhang X, Prahlad J, Wang SQ, Foley LA, et al. The Staphylococcus aureus CidA and LrgA proteins are functional holins involved in the transport of by-products of carbohydrate metabolism. mBio. 2021;13:e0282721. PubMed DOI

Asally M, Kittisopikul M, Rue P, Du Y, Hu Z, Cagatay T, et al. Localized cell death focuses mechanical forces during 3D patterning in a biofilm. Proc Natl Acad Sci USA. 2012;109:18891–6. PubMed DOI PMC

Mai-Prochnow A, Evans F, Dalisay-Saludes D, Stelzer S, Egan S, James S, et al. Biofilm development and cell death in the marine bacterium Pseudoalteromonas tunicata. Appl Environ Microbiol. 2004;70:3232–8. PubMed DOI PMC

Webb JS, Thompson LS, James S, Charlton T, Tolker-Nielsen T, Koch B, et al. Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol. 2003;185:4585–92. PubMed DOI PMC

Vlamakis H, Aguilar C, Losick R, Kolter R. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev. 2008;22:945–53. PubMed DOI PMC

Stovicek V, Vachova L, Palkova Z. Yeast biofilm colony as an orchestrated multicellular organism. Commun Integr Biol. 2012;5:203–5. PubMed DOI PMC

Guilhen C, Forestier C, Balestrino D. Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties. Mol Microbiol. 2017;105:188–210. PubMed DOI

Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 2009;5:e1000354. PubMed DOI PMC

Rossmann FS, Racek T, Wobser D, Puchalka J, Rabener EM, Reiger M, et al. Phage-mediated dispersal of biofilm and distribution of bacterial virulence genes is induced by quorum sensing. PLoS Pathog. 2015;11:e1004653. PubMed DOI PMC

Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Kohler JR, et al. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog. 2010;6:e1000828. PubMed DOI PMC

Wall G, Montelongo-Jauregui D, Vidal Bonifacio B, Lopez-Ribot JL, Uppuluri P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Curr Opin Microbiol. 2019;52:1–6. PubMed DOI PMC

Engelberg D, Mimran A, Martinetto H, Otto J, Simchen G, Karin M, et al. Multicellular stalk-like structures in Saccharomyces cerevisiae. J Bacteriol. 1998;180:3992–6. PubMed DOI PMC

Scherz R, Shinder V, Engelberg D. Anatomical analysis of Saccharomyces cerevisiae stalk-like structures reveals spatial organization and cell specialization. J Bacteriol. 2001;183:5402–13. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...