INTRODUCTION: Autoinflammatory diseases can cause irreversible tissue damage due to systemic inflammation. Recently, the Autoinflammatory Disease Damage Index (ADDI) was developed. The ADDI is the first instrument to quantify damage in familial Mediterranean fever, cryopyrin-associated periodic syndromes, mevalonate kinase deficiency and tumour necrosis factor receptor-associated periodic syndrome. The aim of this study was to validate this tool for its intended use in a clinical/research setting. METHODS: The ADDI was scored on paper clinical cases by at least three physicians per case, independently of each other. Face and content validity were assessed by requesting comments on the ADDI. Reliability was tested by calculating the intraclass correlation coefficient (ICC) using an 'observer-nested-within-subject' design. Construct validity was determined by correlating the ADDI score to the Physician Global Assessment (PGA) of damage and disease activity. Redundancy of individual items was determined with Cronbach's alpha. RESULTS: The ADDI was validated on a total of 110 paper clinical cases by 37 experts in autoinflammatory diseases. This yielded an ICC of 0.84 (95% CI 0.78 to 0.89). The ADDI score correlated strongly with PGA-damage (r=0.92, 95% CI 0.88 to 0.95) and was not strongly influenced by disease activity (r=0.395, 95% CI 0.21 to 0.55). After comments from disease experts, some item definitions were refined. The interitem correlation in all different categories was lower than 0.7, indicating that there was no redundancy between individual damage items. CONCLUSION: The ADDI is a reliable and valid instrument to quantify damage in individual patients and can be used to compare disease outcomes in clinical studies.
- MeSH
- dědičné zánětlivé autoimunitní nemoci komplikace diagnóza MeSH
- dítě MeSH
- dospělí MeSH
- familiární středomořská horečka komplikace diagnóza MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nedostatek mevalonátkinázy komplikace diagnóza MeSH
- odchylka pozorovatele MeSH
- periodické syndromy asociované s kryopyrinem komplikace diagnóza MeSH
- počítačová simulace MeSH
- registrace MeSH
- reprodukovatelnost výsledků MeSH
- stupeň závažnosti nemoci * MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
OBJECTIVES: To characterise the clinical features, immune manifestations and molecular mechanisms in a recently described autoinflammatory disease caused by mutations in TRNT1, a tRNA processing enzyme, and to explore the use of cytokine inhibitors in suppressing the inflammatory phenotype. METHODS: We studied nine patients with biallelic mutations in TRNT1 and the syndrome of congenital sideroblastic anaemia with immunodeficiency, fevers and developmental delay (SIFD). Genetic studies included whole exome sequencing (WES) and candidate gene screening. Patients' primary cells were used for deep RNA and tRNA sequencing, cytokine profiling, immunophenotyping, immunoblotting and electron microscopy (EM). RESULTS: We identified eight mutations in these nine patients, three of which have not been previously associated with SIFD. Three patients died in early childhood. Inflammatory cytokines, mainly interleukin (IL)-6, interferon gamma (IFN-γ) and IFN-induced cytokines were elevated in the serum, whereas tumour necrosis factor (TNF) and IL-1β were present in tissue biopsies of patients with active inflammatory disease. Deep tRNA sequencing of patients' fibroblasts showed significant deficiency of mature cytosolic tRNAs. EM of bone marrow and skin biopsy samples revealed striking abnormalities across all cell types and a mix of necrotic and normal-appearing cells. By immunoprecipitation, we found evidence for dysregulation in protein clearance pathways. In 4/4 patients, treatment with a TNF inhibitor suppressed inflammation, reduced the need for blood transfusions and improved growth. CONCLUSIONS: Mutations of TRNT1 lead to a severe and often fatal syndrome, linking protein homeostasis and autoinflammation. Molecular diagnosis in early life will be crucial for initiating anti-TNF therapy, which might prevent some of the severe disease consequences.
- MeSH
- antiflogistika terapeutické užití MeSH
- cytokiny krev genetika MeSH
- dítě MeSH
- dospělí MeSH
- fenotyp MeSH
- genetické nemoci vázané na chromozom X krev genetika MeSH
- imunofenotypizace MeSH
- lidé MeSH
- mutace * MeSH
- nukleotidyltransferasy genetika MeSH
- předškolní dítě MeSH
- RNA transferová genetika MeSH
- rodokmen MeSH
- sekvenování exomu MeSH
- sideroblastická anemie krev genetika MeSH
- syndromy imunologické nedostatečnosti genetika MeSH
- TNF-alfa analýza antagonisté a inhibitory MeSH
- vývojové poruchy u dětí genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Intramural MeSH