Mitochondrial DNA (mtDNA) is organized in nucleoids in complex with accessory proteins, proteins of mtDNA replication and gene expression machinery. A robust mtDNA genome is represented by hundreds to thousands of nucleoids in cell mitochondrion. Detailed information is lacking about the dynamics of nucleoid distribution within the mitochondrial network upon physiological and pathological events. Therefore, we used confocal microscopy to study mitochondrial nucleoid redistribution upon mitochondrial fission and following reintegration of the mitochondrial network. Fission was induced by oxidative stress at respiration inhibition by rotenone or upon elimination of the protonmotive force by uncoupling or upon canceling its electrical component, ΔΨ(m), by valinomycin; and by silencing of mitofusin MFN2. Agent withdrawal resulted in concomitant mitochondrial network reintegration. We found two major principal morphological states: (i) a tubular state of the mitochondrial network with equidistant nucleoid spacing, 1.10±0.2 nucleoids per μm, and (ii) a fragmented state of solitary spheroid objects in which several nucleoids were clustered. We rarely observed singular mitochondrial fragments with a single nucleoid inside and very seldom we observed empty fragments. Reintegration of fragments into the mitochondrial network re-established the tubular state with equidistant nucleoid spacing. The two major morphological states coexisted at intermediate stages. These observations suggest that both mitochondrial network fission and reconnection of the disintegrated network are nucleoid-centric, i.e., fission and new mitochondrial tubule formation are initiated around nucleoids. Analyses of combinations of these morphological icons thus provide a basis for a future mitochondrial morphology diagnostics.
- MeSH
- buňky Hep G2 MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- konfokální mikroskopie MeSH
- lidé MeSH
- mitochondriální DNA metabolismus ultrastruktura MeSH
- mitochondriální dynamika genetika fyziologie MeSH
- mitochondriální proteiny genetika metabolismus ultrastruktura MeSH
- mitochondrie ultrastruktura MeSH
- replikace DNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Insulin production in pancreatic beta-cells is critically linked to mitochondrial oxidative phosphorylation. Increased ATP production triggered by blood glucose represents the beta-cells' glucose sensor. Type-2 diabetes mellitus results from insulin resistance in peripheral tissues and impaired insulin secretion. Pathology of diabetic beta-cells might be reflected by the altered morphology of mitochondrial network. Its characterization is however hampered by the complexity and density of the three-dimensional (3D) mitochondrial tubular networks in these cell types. Conventional confocal microscopy does not provide sufficient axial resolution to reveal the required details; electron tomography reconstruction of these dense networks is still difficult and time consuming. However, mitochondrial network morphology in fixed cells can also be studied by 4Pi microscopy, a laser scanning microscopy technique which provides an approximately 7-fold improved axial resolution (approximately 100 nm) over conventional confocal microscopy. Here we present a quantitative study of these networks in insulinoma INS-1E cells and primary beta-cells in Langerhans islets. The former were a stably-transfected cell line while the latter were transfected with lentivirus, both expressing mitochondrial matrix targeted redox-sensitive GFP. The mitochondrial networks and their partial disintegration and fragmentation are revealed by carefully created iso-surface plots and their quantitative analysis. We demonstrate that beta-cells within the Langerhans islets from diabetic Goto Kakizaki rats exhibited a more disintegrated mitochondrial network compared to those from control Wistar rats and model insulinoma INS-1E cells. Standardization of these patterns may lead to development of morphological diagnostics for Langerhans islets, for the assessment of beta-cell condition, before their transplantations. Copyright 2010 Elsevier B.V. All rights reserved.
- MeSH
- beta-buňky * patologie ultrastruktura MeSH
- diabetes mellitus 2. typu * patologie MeSH
- inzulinom patologie MeSH
- konfokální mikroskopie * metody MeSH
- krysa rodu rattus MeSH
- mitochondrie * patologie ultrastruktura MeSH
- modely nemocí na zvířatech MeSH
- nádorové buněčné linie MeSH
- nádory slinivky břišní patologie MeSH
- potkani Wistar MeSH
- rekombinantní fúzní proteiny genetika MeSH
- techniky in vitro MeSH
- transfekce MeSH
- zelené fluorescenční proteiny genetika MeSH
- zobrazování trojrozměrné MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Existing controversies led us to analyze absolute mRNA levels of mitochondrial uncoupling proteins (UCP1-UCP5). Individual UCP isoform mRNA levels varied by up to four orders of magnitude in rat and mouse tissues. UCP2 mRNA content was relatively high (0.4 to 0.8 pg per 10 ng of total mRNA) in rat spleen, rat and mouse lung, and rat heart. Levels of the same order of magnitude were found for UCP3 mRNA in rat and mouse skeletal muscle, for UCP4 and UCP5 mRNA in mouse brain, and for UCP2 and UCP5 mRNA in mouse white adipose tissue. Significant differences in pattern were found for rat vs. mouse tissues, such as the dominance of UCP3/UCP5 vs. UCP2 transcript in mouse heart and vice versa in rat heart; or UCP2 (UCP5) dominance in rat brain contrary to 10-fold higher UCP4 and UCP5 dominance in mouse brain. We predict high antioxidant/antiapoptotic UCP function in tissues with higher UCP mRNA content.
- MeSH
- DNA primery genetika MeSH
- druhová specificita MeSH
- iontové kanály metabolismus MeSH
- krysa rodu rattus MeSH
- membránové transportní proteiny metabolismus MeSH
- messenger RNA metabolismus MeSH
- mitochondriální proteiny metabolismus MeSH
- mozek metabolismus MeSH
- myokard metabolismus MeSH
- myši MeSH
- plíce metabolismus MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- proteiny nervové tkáně metabolismus MeSH
- slezina metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Cell death-inducing DFF[DNA fragmentation factor]-like effector-a (CIDEa), may initiate apoptosis by disrupting a complex consisting of 40-kDa caspase-3-activated nuclease (DFF40/CAD) and its 45-kDa inhibitor (DFF45/ICAD). CIDEa, however, was found to be localized in mitochondria. We have performed immunodetection of CIDEa in whole cells and subcellular fractions of HeLa cells adapted for a tetracycline-inducible CIDEa expression. Using immunocytochemistry we observed redistribution, enhanced upon treatment with camptothecin or valinomycin, of CIDEa to nucleus. Similarly, CIDEa content increased in the nuclear fraction but decreased in cytosolic fraction in cells treated to initiate apoptosis. We hypothesize that CIDEa is sequestered in mitochondria while transfer of this potentially dangerous protein from mitochondria into nucleus intensifies or even initiates apoptosis.
Mitochondria in numerous cell types, especially in cultured cells, form a reticular network undergoing constant fusion and fission. The three dimensional (3D) morphology of these networks however has not been studied in detail to our knowledge. We have investigated insulinoma INS-1E and hepatocellular carcinoma HEP-G2 cells transfected with mitochondria-addressed GFP. Using 4Pi microscopy, 3D morphology changes responding to decreased oxidative phosphorylation and/or energetic status could be observed in these cells at an unprecedented 100 nm level of detail. In INS-1E cells cultivated at 11 mM glucose, the mitoreticulum appears predominantly as one interconnected mitochondrion with a nearly constant 262+/-26 nm tubule diameter. If cultured at 5 mM glucose, INS-1E cells show 311+/-36 nm tubules coexisting with numerous flat cisternae. Similar interconnected 284+/-38 nm and 417+/-110 nm tubules were found in HEP-G2 cells cultivated at 5 mM and hyperglycaemic 25 mM glucose, respectively. With rotenone inhibiting respiration to approximately 10%, disintegration into several reticula and numerous approximately 300 nm spheres or short tubules was observed. De-energization by uncoupling additionally led to formation of rings and bulky cisternae of 1.4+/-0.4 microm diameter. Rotenone and uncoupler acted synergically in INS-1E cells and increased fusion (ongoing with fission) forming bowl-like shapes. In HEP-G2 cells fission partially ceased with FCCP plus rotenone. Thus we have revealed previously undescribed details for shapes upon mitochondrial disintegration and clearly demonstrate that high resolution 3D microscopy is required for visualization of mitochondrial network. We recommend 4Pi microscopy as a new standard.
- MeSH
- energetický metabolismus MeSH
- financování organizované MeSH
- hepatocelulární karcinom MeSH
- inzulinom MeSH
- konfokální mikroskopie MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- mitochondrie metabolismus patologie ultrastruktura MeSH
- nádorové buněčné linie MeSH
- nádory jater MeSH
- nádory slinivky břišní MeSH
- oxidativní fosforylace MeSH
- počítačové zpracování obrazu MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
Increased ATP/ADP ratio resulting from enhanced glycolysis and oxidative phosphorylation represents a plausible mechanism controlling the glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Although specific bioenergetics might be involved, parallel studies of cell respiration and mitochondrial membrane potential (DeltaPsi(m)) during GSIS are lacking. Using high resolution respirometry and parallel DeltaPsi(m) monitoring by two distinct fluorescence probes we have quantified bioenergetics in rat insulinoma INS-1E cells representing a suitable model to study in vitro insulin secretion. Upon glucose addition to glucose-depleted cells we demonstrated a simultaneous increase in respiration and DeltaPsi(m) during GSIS and showed that the endogenous state 3/state 4 respiratory ratio hyperbolically increased with glucose, approaching the maximum oxidative phosphorylation rate at maximum GSIS. Attempting to assess the basis of the "toxic" effect of fatty acids on insulin secretion, GSIS was studied after linoleic acid addition, which diminished respiration increase, DeltaPsi(m) jump, and magnitude of insulin release, and reduced state 3/state 4 dependencies on glucose. Its effects were due to protonophoric function, i.e. uncoupling, since without glucose, linoleic acid accelerated both state 3 and state 4 respiration by similar extent. In turn, state 3 respiration increased marginally with linoleic acid at 10-20mM glucose. We conclude that upon glucose addition in physiological range, the INS-1E cells are able to regulate the oxidative phosphorylation rate from nearly zero to maximum and that the impairment of GSIS by linoleic acid is caused by mitochondrial uncoupling. These findings may be relevant to the pathogenesis of type 2 diabetes.
- MeSH
- adenosindifosfát metabolismus MeSH
- adenosintrifosfát metabolismus MeSH
- financování organizované MeSH
- glukosa farmakologie MeSH
- inzulinom sekrece MeSH
- krysa rodu rattus MeSH
- kyselina linolová farmakologie MeSH
- Langerhansovy ostrůvky sekrece účinky léků MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- mitochondrie metabolismus účinky léků MeSH
- nádorové buňky kultivované MeSH
- nádory slinivky břišní sekrece MeSH
- potkani Wistar MeSH
- spotřeba kyslíku účinky léků MeSH
- transmisní elektronová mikroskopie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
Thermogenic uncoupling has been proven only for UCP1 in brown adipose tissue. All other isoforms of UCPs are potentially acting in suppression of mitochondrial reactive oxygen species (ROS) production. In this contribution we show that BAT mitochondria can be uncoupled by lauric acid in the range of approximately 100 nM when endogenous fatty acids are combusted by carnitine cycle and beta-oxidation is properly separated from the uncoupling effect. Respiration increased up to 3 times when related to the lowest fatty acid content (BSA present plus carnitine cycle). We also illustrated that any effect leading to more coupled states leads to enhanced H2O2 generation and any effect resulting in uncoupling gives reduced H2O2 generation in BAT mitochondria. Finally, we report doubling of plant UCP transcript in cells as well as amount of protein detected by 3H-GTP-binding sites in mitochondria of shoots and roots of maize seedlings subjected to the salt stress.
- MeSH
- buněčné dýchání MeSH
- financování organizované MeSH
- guanosintrifosfát metabolismus MeSH
- hnědá tuková tkáň metabolismus MeSH
- iontové kanály MeSH
- karnitin metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- kukuřice setá metabolismus MeSH
- kyseliny laurové farmakologie metabolismus MeSH
- mastné kyseliny metabolismus MeSH
- membránové proteiny fyziologie MeSH
- mitochondriální proteiny MeSH
- mitochondrie metabolismus MeSH
- oxidační stres MeSH
- peroxid vodíku metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostlinné proteiny fyziologie MeSH
- rozpřahující látky farmakologie metabolismus MeSH
- savci MeSH
- techniky in vitro MeSH
- transportní proteiny fyziologie MeSH
- vazebná místa MeSH
- výhonky rostlin metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- přehledy MeSH