Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
nestr.
Intrauterine or systemic inflammation occurs in ca. 20% of all pregnancies, and epidemiological observations indicate that they are associated with various neurodevelopmental disorders in the offspring, including autism spectrum disorders, cognitive delay, and schizophrenia. However, the underlying cellular and molecular mechanisms have not been fully elucidated. Recent research indicates that inflammatory cytokines (e.g. interferon gamma and interleukin 6) may modulate the expression and activity of key enzymes involved in placental tryptophan metabolism and hence production of neuroactive molecules (e.g. serotonin, melatonin, kynurenine, kynurenic acid and quinolinic acid). After release from the placenta into the foetal circulation, these neuroactive compounds may interfere with foetal brain development and programming. Thus, in the proposed project we aim to clarify links between prenatal inflammation, inflammatory cytokines, placental tryptophan metabolism and infant neurodevelopment, thereby identifying potential avenues for addressing neurological disorders in utero.
Nitroděložní či systémový mateřský zánět komplikuje zhruba 20% všech těhotenství. Epidemiologické studie naznačují, že mateřský zánět je zodpovědný za abnormální psychomotorický vývoj u potomků, včetně poruch autistického spektra, kognitivního zpoždění a schizofrenie. Buněčné/molekulární mechanismy tohoto fenoménu dosud nebyly plně objasněny. Recentní výzkumy naznačují, že prozánětlivé cytokiny (např. interferon gamma a interleukin 6) regulují expresi a aktivitu klíčových enzymů metabolismu tryptofanu v placentě a následně placentární produkci neuroaktivních metabolitů (např. serotonin, melatonin, kynurenin, kyselina kynurenová a kyselina chinolinová). Po uvolnění z placenty do fetálního oběhu mohou tyto metabolity ovlivnit vývoj a programování mozku plodu. V navrhovaném projektu se s pomocí řady experimentálních přístupů snažíme objasnit vazby mezi prenatálním zánětem, produkcí prozánětlivých cytokinů, placentárním metabolizmem tryptofanu a následným psychomotorickým vývojem kojenců s cílem identifikovat potenciální cesty k in utero prevenci rozvoje psychomotorických poruch u dětí.
- Klíčová slova
- pregnancy, zánět, inflammation, Metabolismus, Metabolism, tryptofan, tryptophan, Těhotenství, placenta, placenta, neurotoxicity, fetal development, neurotoxicita, vývoj plodu,
- NLK Publikační typ
- závěrečné zprávy o řešení grantu AZV MZ ČR
Proper fetal development requires tight regulation of serotonin concentrations within the fetoplacental unit. This homeostasis is partly maintained by the placental transporter OCT3/SLC22A3, which takes up serotonin from the fetal circulation. Metformin, an antidiabetic drug commonly used to treat gestational diabetes mellitus, was shown to inhibit OCT3. We, therefore, hypothesized that its use during pregnancy could disrupt placental serotonin homeostasis. This hypothesis was tested using three experimental model systems: primary trophoblast cells isolated from the human term placenta, fresh villous human term placenta fragments, and rat term placenta perfusions. Inhibition of serotonin transport by metformin at three concentrations (1 μM, 10 μM, and 100 μM) was assessed in all three models. The OCT3 inhibitor decynium-22 (100 μM) and paroxetine (100 μM), a dual inhibitor of SERT and OCT3, were used as controls. In primary trophoblasts, paroxetine exhibited the strongest inhibition of serotonin uptake, followed by decynium-22. Metformin showed a concentration-dependent effect, reducing serotonin uptake by up to 57 % at the highest concentration. Its inhibitory effect was less pronounced in fresh villous fragments but remained statistically significant at all concentrations. In the perfused rat placenta, metformin demonstrated a concentration-dependent effect, reducing placental serotonin uptake by 44 % at the highest concentration tested. Our findings across all experimental models show inhibition of placental OCT3 by metformin, resulting in reduced serotonin uptake by the trophoblast. This sheds light on mechanisms that may underpin metformin-mediated effects on fetal development.
- MeSH
- biologický transport účinky léků MeSH
- hypoglykemika farmakologie MeSH
- krysa rodu rattus MeSH
- kultivované buňky MeSH
- lidé MeSH
- metformin * farmakologie MeSH
- oktamerní transkripční faktor 3 metabolismus MeSH
- placenta * metabolismus účinky léků MeSH
- potkani Wistar MeSH
- proteiny přenášející organické kationty MeSH
- serotonin * metabolismus MeSH
- těhotenství MeSH
- trofoblasty * metabolismus účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
The increasing use of cannabis during pregnancy raises concerns about its impact on fetal development. While cannabidiol (CBD) shows therapeutic promise, its effects during pregnancy remain uncertain. We investigated CBD's influence on tryptophan (TRP) metabolism in the human placenta. TRP is an essential amino acid that is metabolized via the serotonin and kynurenine (KYN) pathways, which are critical for fetal neurodevelopment. We used human term villous placental explants, an advanced ex vivo model, to study CBD's impact on key TRP metabolic enzymes. In addition, vesicles isolated from the microvillous membrane (MVM) of the human placenta were used to assess CBD's effect on placental serotonin uptake. Explants were exposed to CBD at therapeutic (0.1, 1, 2.5 μg/ml) and non-therapeutic (20 and 40 μg/ml) concentrations to determine its effects on the gene and protein expression of key enzymes in TRP metabolism and metabolite release. CBD upregulated TRP hydroxylase (TPH) and downregulated monoamine oxidase (MAO-A), resulting in reduced levels of 5-hydroxyindoleacetic acid (HIAA). It also downregulated serotonin transporter expression and inhibited serotonin transport across the MVM by up to 60% while simultaneously enhancing TRP metabolism via the kynurenine pathway by upregulating indoleamine-pyrrole 2,3-dioxygenase (IDO-1). Among kynurenine pathway enzymes, kynurenine 3 monooxygenase (KMO) was upregulated while kynurenine aminotransferase 1 (KAT-1) was downregulated; the former is associated with neurotoxic metabolite production, while the latter is linked to reduced neuroprotective metabolite levels. Overall, these results indicate that CBD modulates TRP catabolism in the human placenta, potentially disrupting the tightly regulated homeostasis of the serotonin and KYN pathways.
Maternal immune activation during pregnancy is a risk factor for offspring neuropsychiatric disorders. Among the mechanistic pathways by which maternal inflammation can affect fetal brain development and programming, those involving tryptophan (TRP) metabolism have drawn attention because various TRP metabolites have neuroactive properties. This study evaluates the effect of bacterial (lipopolysaccharides/LPS) and viral (polyinosinic:polycytidylic acid/poly I:C) placental infection on TRP metabolism using an ex vivo model. Human placenta explants were exposed to LPS or poly I:C, and the release of TRP metabolites was analyzed together with the expression of related genes and proteins and the functional activity of key enzymes in TRP metabolism. The rate-limiting enzyme in the serotonin pathway, tryptophan hydroxylase, showed reduced expression and functional activity in explants exposed to LPS or poly I:C. Conversely, the rate-limiting enzyme in the kynurenine pathway, indoleamine dioxygenase, exhibited increased activity, gene, and protein expression, suggesting that placental infection mainly promotes TRP metabolism via the kynurenine (KYN) pathway. Furthermore, we observed that treatment with LPS or poly I:C increased activity in the kynurenine monooxygenase branch of the KYN pathway. We conclude that placental infection impairs TRP homeostasis, resulting in decreased production of serotonin and an imbalance in the ratio between quinolinic acid and kynurenic acid. This disrupted homeostasis may eventually expose the fetus to suboptimal/toxic levels of neuroactive molecules and impair fetal brain development.
- MeSH
- indolamin-2,3,-dioxygenasa metabolismus MeSH
- kynurenin * metabolismus MeSH
- lidé MeSH
- lipopolysacharidy toxicita MeSH
- placenta * metabolismus MeSH
- poly I metabolismus MeSH
- serotonin metabolismus MeSH
- těhotenství MeSH
- tryptofan metabolismus MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH