Iron is an essential mineral participating in numerous biological processes in the organism under physiological conditions. However, it may be also involved in the pathological mechanisms activated in various cardiovascular diseases including myocardial ischemia/reperfusion (I/R) injury, due to its involvement in reactive oxygen species (ROS) production. Furthermore, iron has been reported to participate in the mechanisms of iron-dependent cell death defined as "ferroptosis". On the other hand, iron may be also involved in the adaptive processes of ischemic preconditioning (IPC). This study aimed to elucidate whether small amounts of iron may modify the cardiac response to I/R in isolated perfused rat hearts and their protection by IPC. Pretreatment of the hearts with iron nanoparticles 15 min prior to sustained ischemia (iron preconditioning, Fe-PC) did not attenuate post-I/R contractile dysfunction. Recovery of left ventricular developed pressure (LVDP) was significantly improved only in the group with combined pretreatment with iron and IPC. Similarly, the rates of contraction and relaxation [+/-(dP/dt)max] were almost completely restored in the group preconditioned with a combination of iron and IPC but not with iron alone. In addition, the severity of reperfusion arrhythmias was reduced only in the iron+IPC group. No changes in protein levels of "survival" kinases of the RISK pathway (Reperfusion Injury Salvage Kinase) were found except for reduced caspase 3 levels in both preconditioned groups. The results indicate that a failure to precondition rat hearts with iron may be associated with the absent upregulation of RISK proteins and the pro-ferroptotic effect manifested by reduced glutathione peroxidase 4 (GPX4) levels. However, combination with IPC suppressed the negative effects of iron resulting in cardioprotection.
- MeSH
- ischemické přivykání * MeSH
- krysa rodu rattus MeSH
- myokard metabolismus MeSH
- potkani Wistar MeSH
- přivykání k ischémii * metody MeSH
- reperfuzní poškození myokardu * metabolismus MeSH
- srdce MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
We investigated whether polyethylene glycol-coated Fe3O4 nanoparticles (IONs), acute stress and their combination modifies vascular functions, nitric oxide synthase (NOS) activity, mean arterial pressure (MAP) as well as hepcidin and ferritin H gene expressions in Wistar-Kyoto rats. Rats were divided into control, ION-treated rats (1 mg Fe/kg i.v.), repeated acute air-jet stress-exposed rats and IONs-and-stress co-exposed rats. Maximal acetylcholine (ACh)-induced and sodium nitroprusside (SNP)-induced relaxations in the femoral arteries did not differ among the groups. IONs alone significantly elevated the N?-nitro-L-arginine methyl ester (L-NAME)-sensitive component of ACh-induced relaxation and reduced the sensitivity of vascular smooth muscle cells to SNP. IONs alone also elevated NOS activity in the brainstem and hypothalamus, reduced NOS activity in the kidneys and had no effect in the liver. Acute stress alone failed to affect vascular function and NOS activities in all the tissues investigated but it elevated ferritin H expression in the liver. In the ION-and-stress group, NOS activity was elevated in the kidneys and liver, but reduced in the brainstem and hypothalamus vs. IONs alone. IONs also accentuated air-jet stress-induced MAP responses vs. stress alone. Interestingly, stress reduced ION-originated iron content in blood and liver while it was elevated in the kidneys. In conclusion, the results showed that 1) acute administration of IONs altered vascular function, increased L-NAME-sensitive component of ACh-induced relaxation and had tissue-dependent effects on NOS activity, 2) ION effects were considerably reduced by co-exposure to repeated acute stress, likely related to decrease of ION-originated iron in blood due to elevated decomposition and/or excretion.
- MeSH
- cévní endotel účinky léků metabolismus MeSH
- fyziologický stres účinky léků MeSH
- krysa rodu rattus MeSH
- magnetické nanočástice oxidů železa aplikace a dávkování chemie MeSH
- oxid dusnatý biosyntéza metabolismus MeSH
- potkani inbrední WKY MeSH
- synthasa oxidu dusnatého metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
This study investigated the contribution of reactive oxygen species (ROS) to blood pressure regulation in conscious adult male Wistar rats exposed to acute stress. Role of ROS was investigated in rats with temporally impaired principal blood pressure regulation systems using ganglionic blocker pentolinium (P, 5 mg/kg), angiotensin converting enzyme inhibitor captopril (C, 10 mg/kg), nitric oxide synthase inhibitor L-NAME (L, 30 mg/kg) and superoxide dismutase mimeticum tempol (T, 25 mg/kg). Mean arterial pressure (MAP) was measured by the carotid artery catheter and inhibitors were administered intravenously. MAP was disturbed by a 3-s air jet, which increased MAP by 35.2+/-3.0 % vs. basal MAP after the first exposure. Air jet increased MAP in captopril- and tempol-treated rats similarly as observed in saline-treated rats. In pentolinium-treated rats stress significantly decreased MAP vs. pre-stress value. In L-NAME-treated rats stress failed to affect MAP significantly. Treatment of rats with P+L+C resulted in stress-induced MAP decrease by 17.3+/-1.3 % vs. pre-stress value and settling time (20.1+/-4.2 s). In P+L+C+T-treated rats stress led to maximal MAP decrease by 26.4+/-2.2 % (p<0.005 vs. P+L+C) and prolongation of settling time to 32.6+/-3.3 s (p<0.05 vs. P+L+C). Area under the MAP curve was significantly smaller in P+L+C-treated rats compared to P+L+C+T-treated ones (167+/-43 vs. 433+/-69 a.u., p<0.008). In conclusion, in rats with temporally impaired blood pressure regulation, the lack of ROS resulted in greater stress-induced MAP alterations and prolongation of time required to reach new post-stress steady state.
- MeSH
- krevní tlak * MeSH
- krysa rodu rattus MeSH
- potkani Wistar MeSH
- psychický stres patofyziologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- sympatický nervový systém patofyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Omega-3 fatty acids (omega3FA) are known to reduce hypertriglyceridemia- and inflammation-induced vascular wall diseases. However, mechanisms of their effects are not completely clear. We examined, whether 10-day omega3FA diet can reduce bacterial lipopolysaccharide-induced changes in expression of gap junction protein connexin40 (Cx40) in the aorta of hereditary hypertriglyceridemic (hHTG) rats. After administration of a single dose of lipopolysaccharide (LPS, 1 mg/kg, i.p.) to adult hHTG rats, animals were fed with omega3FA diet (30 mg/kg/day) for 10 days. LPS decreased Cx40 expression that was associated with reduced acetylcholine-induced relaxation of aorta. Omega3FA administration to LPS rats had partial anti-inflammatory effects, associated with increased Cx40 expression and improved endothelium dependent relaxation of the aorta. Our results suggest that 10-day omega3FA diet could protect endothelium-dependent relaxation of the aorta of hHTG rats against LPS-induced damage through the modulation of endothelial Cx40 expression.
- MeSH
- antigeny diferenciační myelomonocytární metabolismus MeSH
- aorta účinky léků metabolismus MeSH
- CD antigeny metabolismus MeSH
- hypertriglyceridemie vrozené dietoterapie metabolismus MeSH
- konexiny metabolismus MeSH
- krysa rodu rattus MeSH
- kyseliny mastné omega-3 farmakologie terapeutické užití MeSH
- lipopolysacharidy MeSH
- western blotting MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Reduced tolerance to ischemia/reperfusion (IR) injury has been shown in elder human and animal hearts, however, the onset of this unfavorable phenotype and cellular mechanisms behind remain unknown. Moreover, aging may interfere with the mechanisms of innate cardioprotection (preconditioning, PC) and cause defects in protective cell signaling. We studied the changes in myocardial function and response to ischemia, as well as selected proteins involved in "pro-survival" pathways in the hearts from juvenile (1.5 months), younger adult (3 months) and mature adult (6 months) male Wistar rats. In Langendorff-perfused hearts exposed to 30-min ischemia/2-h reperfusion with or without prior PC (one cycle of 5-min ischemia/5-min reperfusion), we measured occurrence of reperfusion-induced arrhythmias, recovery of contractile function (left ventricular developed pressure, LVDP, in % of pre-ischemic values), and size of infarction (IS, in % of area at risk size, TTC staining and computerized planimetry). In parallel groups, LV tissue was sampled for the detection of protein levels (WB) of Akt kinase (an effector of PI3-kinase), phosphorylated (activated) Akt (p-Akt), its target endothelial NO synthase (eNOS) and protein kinase Cepsilon (PKCepsilon) as components of "pro-survival" cascades. Maturation did not affect heart function, however, it impaired cardiac response to lethal IR injury (increased IS) and promoted arrhythmogenesis. PC reduced the occurrence of malignant arrhythmias, IS and improved LVDP recovery in the younger animals, while its efficacy was attenuated in the mature adults. Loss of PC protection was associated with age-dependent reduced Akt phosphorylation and levels of eNOS and PKCepsilon in the hearts of mature animals compared with the younger ones, as well as with a failure of PC to upregulate these proteins. Aging-related alterations in myocardial response to ischemia may be caused by dysfunction of proteins involved in protective cell signaling that may occur already during the process of maturation.
- MeSH
- časové faktory MeSH
- fosforylace MeSH
- funkce levé komory srdeční MeSH
- fyziologická adaptace MeSH
- infarkt myokardu metabolismus patologie patofyziologie prevence a kontrola MeSH
- ischemické přivykání metody MeSH
- komorový tlak (srdce) MeSH
- koronární cirkulace MeSH
- modely nemocí na zvířatech MeSH
- myokard metabolismus patologie MeSH
- obnova funkce MeSH
- potkani Wistar MeSH
- preparace izolovaného srdce MeSH
- proteinkinasa C-epsilon metabolismus MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- reperfuzní poškození myokardu metabolismus patologie patofyziologie prevence a kontrola MeSH
- signální transdukce MeSH
- srdeční arytmie etiologie patofyziologie prevence a kontrola MeSH
- srdeční frekvence MeSH
- stárnutí metabolismus patologie MeSH
- synthasa oxidu dusnatého, typ III metabolismus MeSH
- věkové faktory MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Although pleiotropy, which is defined as multiple effects derived from a single gene, was recognized many years ago, and considerable progress has since been achieved in this field, it is not very clear how much this feature of a drug is clinically relevant. During the last decade, beneficial pleiotropic effects from hypolipidemic drugs (as in, effects that are different from the primary ones) have been associated with reduction of cardiovascular risk. As with statins, the agonists of peroxisome proliferator-activated receptors (PPARs), niacin and fibrates, have been suggested to exhibit pleiotropic activity that could significantly modify the outcome of a cardiovascular ailment. This review examines findings demonstrating the impacts of treatment with hypolipidemic drugs on cardiac response to ischemia in a setting of acute ischemia-reperfusion, in relation to PPAR activation. Specifically, it addresses the issue of susceptibility to ischemia, with particular regard to the preconditioning-like cardioprotection conferred by hypolipidemic drugs, as well as the potential molecular mechanisms behind this cardioprotection. Finally, the involvement of PPAR activation in the mechanisms of non-metabolic cardioprotective effects from hypolipidemic drugs, and their effects on normal and pathologically altered myocardium (in the hearts of hypertensive rats) is also discussed.
- MeSH
- hypertenze komplikace farmakoterapie metabolismus MeSH
- hypolipidemika aplikace a dávkování farmakologie terapeutické užití MeSH
- ischemické přivykání * MeSH
- kardiotonika aplikace a dávkování farmakologie terapeutické užití MeSH
- krysa rodu rattus MeSH
- metabolismus lipidů účinky léků MeSH
- modely nemocí na zvířatech MeSH
- receptory aktivované proliferátory peroxizomů metabolismus MeSH
- reperfuzní poškození myokardu etiologie metabolismus prevence a kontrola MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
This study examined nitric oxide (NO) production, oxidative load and endothelium-dependent relaxation (NO-dependent and NO-independent) in adult male borderline hypertensive (BHR) and spontaneously hypertensive (SHR) rats as compared to normotensive Wistar-Kyoto (WKY) rats. Systolic blood pressure (BP) was determined by tail-cuff. NO production was determined by conversion of [(3)H]-L-arginine. Conjugated dienes (CD) and concentrations of thiobarbituric acid-reactive substances (TBARS) were measured for assessment of oxidative load. Vascular function was investigated in rings of the femoral artery (FA) using a wire myograph. BP of WKY, BHR and SHR was 106+/-2, 143+/-3 and 191+/-3 mm Hg, respectively (p<0.01 for each). Significant left ventricle (LV) hypertrophy and elevated levels of CD and TBARS in the LV were present in BHR and SHR as compared to WKY. NO production was elevated significantly in the aorta of BHR and SHR vs. WKY as well as in the LV of SHR vs. WKY. Acetylcholine (ACh)-induced relaxation of the FA was reduced significantly in both BHR and SHR vs. WKY. The NO-dependent component of ACh-induced relaxation had increasing tendency in hypertensive groups and it correlated positively with BP. The NO-independent component of vasorelaxation was reduced significantly in BHR and SHR vs. WKY and it correlated negatively with BP. In conclusion, the results showed that endothelial dysfunction in the experimental model of borderline hypertensive and hypertensive rats is NO-independent. The results suggest that borderline hypertension represents a risk of other cardiovascular disorders which is qualitatively similar to that of fully developed hypertension.
- MeSH
- arteria femoralis patofyziologie MeSH
- cévní endotel patofyziologie MeSH
- hypertenze etiologie patofyziologie MeSH
- krevní tlak MeSH
- krysa rodu rattus MeSH
- onemocnění periferních arterií komplikace patofyziologie MeSH
- oxid dusnatý metabolismus MeSH
- potkani inbrední SHR MeSH
- potkani inbrední WKY MeSH
- tuhost cévní stěny MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
As wine polyphenols were shown to possess many positive effects in mammals, including improvement of vascular function, this study investigated the effect of the Slovak Alibernet red wine extract (AWE) on blood pressure and vascular function in young normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Six weeks old, male, WKY and SHR were treated with AWE for three weeks at the dose of 24.2 mg/kg/day. Blood pressure (BP), determined by tail-cuff plethysmography, was significantly elevated in SHR vs. WKY and AWE failed to affect it. Lipid peroxidation was evaluated by determination of thiobarbituric acid-reactive substances. Vascular function was assessed in rings of the femoral artery using Mulvany-Halpern's myograph. Maximal endothelium-dependent acetylcholine (ACh)-induced relaxation was reduced in control SHR vs. WKY rats by approximately 9.3 %, which was associated with a significant decrease of its NO-independent component. AWE failed to affect maximal ACh-induced relaxation, both its NO-dependent and independent components, compared to controls of the same genotype. AWE however reduced lipid peroxidation in the left ventricle of both WKY and SHR and in the liver of SHR. In conclusion, three-week administration of AWE failed to reduce BP and to improve endothelial function in the femoral arteries of both genotypes investigated.
- MeSH
- cévní endotel účinky léků patofyziologie MeSH
- cévní rezistence účinky léků MeSH
- hypertenze farmakoterapie etiologie patofyziologie MeSH
- krevní tlak účinky léků MeSH
- krysa rodu rattus MeSH
- onemocnění periferních arterií komplikace farmakoterapie patofyziologie MeSH
- potkani inbrední SHR MeSH
- potkani inbrední WKY MeSH
- rostlinné extrakty aplikace a dávkování MeSH
- stilbeny aplikace a dávkování MeSH
- terapie neúspěšná MeSH
- víno MeSH
- výsledek terapie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Publikační typ
- abstrakt z konference MeSH