BACKGROUND: Inhalation of lead oxide nanoparticles (PbO NPs), which are emitted to the environment by high-temperature technological processes, heavily impairs target organs. These nanoparticles pass through the lung barrier and are distributed via the blood into secondary target organs, where they cause numerous pathological alterations. Here, we studied in detail, macrophages as specialized cells involved in the innate and adaptive immune response in selected target organs to unravel their potential involvement in reaction to subchronic PbO NP inhalation. In this context, we also tackled possible alterations in lipid uptake in the lungs and liver, which is usually associated with foam macrophage formation. RESULTS: The histopathological analysis of PbO NP exposed lung revealed serious chronic inflammation of lung tissues. The number of total and foam macrophages was significantly increased in lung, and they contained numerous cholesterol crystals. PbO NP inhalation induced changes in expression of phospholipases C (PLC) as enzymes linked to macrophage-mediated inflammation in lungs. In the liver, the subchronic inhalation of PbO NPs caused predominantly hyperemia, microsteatosis or remodeling of the liver parenchyma, and the number of liver macrophages also significantly was increased. The gene and protein expression of a cholesterol transporter CD36, which is associated with lipid metabolism, was altered in the liver. The amount of selected cholesteryl esters (CE 16:0, CE 18:1, CE 20:4, CE 22:6) in liver tissue was decreased after subchronic PbO NP inhalation, while total and free cholesterol in liver tissue was slightly increased. Gene and protein expression of phospholipase PLCβ1 and receptor CD36 in human hepatocytes were affected also in in vitro experiments after acute PbO NP exposure. No microscopic or serious functional kidney alterations were detected after subchronic PbO NP exposure and CD68 positive cells were present in the physiological mode in its interstitial tissues. CONCLUSION: Our study revealed the association of increased cholesterol and lipid storage in targeted tissues with the alteration of scavenger receptors and phospholipases C after subchronic inhalation of PbO NPs and yet uncovered processes, which can contribute to steatosis in liver after metal nanoparticles exposure.
- MeSH
- cholesterol MeSH
- fosfolipasy typu C * MeSH
- kovové nanočástice * chemie MeSH
- lidé MeSH
- makrofágy MeSH
- olovo MeSH
- oxidy MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The inhalation of metal (including lead) nanoparticles poses a real health issue to people and animals living in polluted and/or industrial areas. In this study, we exposed mice to lead(II) nitrate nanoparticles [Pb(NO3)2 NPs], which represent a highly soluble form of lead, by inhalation. We aimed to uncover the effects of their exposure on individual target organs and to reveal potential variability in the lead clearance. We examined (i) lead biodistribution in target organs using laser ablation and inductively coupled plasma mass spectrometry (LA-ICP-MS) and atomic absorption spectrometry (AAS), (ii) lead effect on histopathological changes and immune cells response in secondary target organs and (iii) the clearance ability of target organs. In the lungs and liver, Pb(NO3)2 NP inhalation induced serious structural changes and their damage was present even after a 5-week clearance period despite the lead having been almost completely eliminated from the tissues. The numbers of macrophages significantly decreased after 11-week Pb(NO3)2 NP inhalation; conversely, abundance of alpha-smooth muscle actin (α-SMA)-positive cells, which are responsible for augmented collagen production, increased in both tissues. Moreover, the expression of nuclear factor κB (NF-κB) and selected cytokines, such as tumor necrosis factor alpha (TNFα), transforming growth factor beta 1 (TGFβ1), interleukin 6(IL-6), IL-1α and IL-1β , displayed a tissue-specific response to lead exposure. In summary, diminished inflammatory response in tissues after Pb(NO3)2 NPs inhalation was associated with prolonged negative effect of lead on tissues, as demonstrated by sustained pathological changes in target organs, even after long clearance period.
- MeSH
- aktiny agonisté genetika imunologie MeSH
- alveolární makrofágy účinky léků imunologie patologie MeSH
- aplikace inhalační MeSH
- biologická dostupnost MeSH
- dusičnany farmakokinetika toxicita MeSH
- exprese genu MeSH
- inhalační expozice analýza MeSH
- interleukin-1alfa agonisté genetika imunologie MeSH
- interleukin-1beta agonisté genetika imunologie MeSH
- interleukin-6 agonisté genetika imunologie MeSH
- játra účinky léků imunologie patologie MeSH
- kovové nanočástice aplikace a dávkování toxicita MeSH
- látky znečišťující vzduch farmakokinetika toxicita MeSH
- myši inbrední ICR MeSH
- myši MeSH
- NF-kappa B agonisté genetika imunologie MeSH
- olovo farmakokinetika toxicita MeSH
- plíce účinky léků imunologie patologie MeSH
- poločas MeSH
- spektrofotometrie atomová MeSH
- tkáňová distribuce MeSH
- TNF-alfa agonisté genetika imunologie MeSH
- transformující růstový faktor beta1 agonisté genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Although the production of engineered nanoparticles increases our knowledge of toxicity and mechanisms of bioactivity during relevant exposures is lacking. In the present study mice were exposed to PbO nanoparticles (PbONP; 192.5 µg/m3; 1.93 × 106 particles/cm3) for 2, 5 and 13 weeks through continuous inhalation. The analyses addressed Pb and PbONP distribution in organs (lung, liver, kidney, brain) using electrothermal atomic absorption spectrometry and transmission electron microscopy, as well as histopathology and analyses of oxidative stress biomarkers. New LC-MS/MS methods were validated for biomarkers of lipid damage F2-isoprostanes (8-iso-prostaglandins F2-alpha and E2) and hydroxylated deoxoguanosine (8-OHdG, marker of DNA oxidation). Commonly studied malondialdehyde was also measured as TBARS by HPLC-DAD. The study revealed fast blood transport and distribution of Pb from the lung to the kidney and liver. A different Pb accumulation trend was observed in the brain, suggesting transfer of NP along the nasal nerve to the olfactory bulbs. Long-term inhalation of PbONP caused lipid peroxidation in animal brains (increased levels of TBARS and both isoprostanes). Membrane lipid damage was also detected in the kidney after shorter exposures, but not in the liver or lung. On the contrary, longer exposures to PbONP increased levels of 8-OHdG in the lung and temporarily increased lung weight after 2 and 5 weeks of exposure. The histopathological changes observed mainly in the lung and liver indicated inflammation and general toxicity responses. The present long-term inhalation study indicates risks of PbONP to both human health and the environment.
- MeSH
- biologické markery metabolismus MeSH
- inhalační expozice škodlivé účinky analýza MeSH
- játra účinky léků metabolismus MeSH
- ledviny účinky léků metabolismus MeSH
- lidé MeSH
- membránové lipidy metabolismus MeSH
- mozek účinky léků metabolismus MeSH
- myši inbrední ICR MeSH
- myši MeSH
- nanočástice metabolismus toxicita MeSH
- olovo metabolismus toxicita MeSH
- oxidace-redukce MeSH
- oxidační stres účinky léků MeSH
- oxidy metabolismus toxicita MeSH
- peroxidace lipidů účinky léků MeSH
- plíce účinky léků metabolismus MeSH
- poškození DNA * MeSH
- testy subchronické toxicity MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Due to the growing number of applications of cadmium oxide nanoparticles (CdO NPs), there is a concern about their potential deleterious effects. The objective of our study was to investigate the effect of CdO NPs on the immune response, renal and intestine oxidative stress, blood antioxidant defence, renal fibrotic response, bone density and mineral content. Six-week-old female ICR mice were exposed to CdO NPs for 6 weeks by inhalation (particle size: 9.82 nm, mass concentration: 31.7 μg CdO/m3, total deposited dose: 0.195 μg CdO/g body weight). CdO NPs increased percentage of thymus CD3e+CD8a+ cells and moderately enhanced splenocyte proliferation and production of cytokines and chemokines. CdO NPs elevated pro-fibrotic factors (TGF-β2, α-SMA and collagen I) in the kidney, and concentrations of AGEs in the intestine. The ratio of GSH and GSSG in blood was slightly reduced. Exposure to CdO NPs resulted in 10-fold higher Cd concentration in tibia bones. No differences were found in bone mass density, mineral content, bone area values, bone concentrations of Ca, P, Mg and Ca/P ratio. Our findings indicate stimulation of immune/inflammatory response, oxidative stress in the intestine, starting fibrotic response in kidneys and accumulation of CdO NPs in bones of mice.
- MeSH
- aplikace inhalační MeSH
- buněčná imunita účinky léků MeSH
- cytokiny metabolismus MeSH
- fibróza chemicky indukované MeSH
- kovové nanočástice aplikace a dávkování toxicita MeSH
- ledviny účinky léků patologie MeSH
- lymfatické uzliny účinky léků MeSH
- myši inbrední ICR MeSH
- oxidační stres účinky léků MeSH
- oxidy aplikace a dávkování toxicita MeSH
- slezina účinky léků MeSH
- sloučeniny kadmia aplikace a dávkování toxicita MeSH
- střeva účinky léků MeSH
- thymus účinky léků MeSH
- tibie účinky léků MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Although plants are often exposed to atmospheric nanoparticles (NPs), the mechanism of NP deposition and their effects on physiology and metabolism, and particularly in combination with other stressors, are not yet understood. Exploring interactions between stressors is particularly important for understanding plant responses in urban environments where elevated temperatures can be associated with air pollution. Accordingly, 3-year-old spruce seedlings were exposed for 2 weeks to aerial cadmium oxide (CdO) NPs of environmentally relevant size (8-62 nm) and concentration (2 × 105 cm-3). While half the seedlings were initially acclimated to high temperature (35 °C) and vapour pressure deficit (VPD; 2.81 kPa), the second half of the plants were left under non-stressed conditions (20 °C, 0.58 kPa). Atomic absorption spectrometry was used to determine Cd content in needles, while gas and liquid chromatography was used to determine changes in primary and secondary metabolites. Photosynthesis-related processes were explored with gas-exchange and chlorophyll fluorescence systems. Our work supports the hypothesis that atmospheric CdO NPs penetrate into leaves but high temperature and VPD reduce such penetration due to stomatal closure. The hypothesis that atmospheric CdO NPs influences physiological and metabolic processes in plants was also confirmed. This impact strengthens with increasing time of exposure. Finally, we found evidence that plants acclimated to stress conditions have different sensitivity to CdO NPs compared to plants not so acclimated. These findings have important consequences for understanding impacts of global warming on plants and indicates that although the effects of elevated temperatures can be deleterious, this may limit other forms of plant stress associated with air pollution.
- MeSH
- aklimatizace fyziologie MeSH
- borovice MeSH
- fotosyntéza fyziologie MeSH
- globální oteplování MeSH
- jedle MeSH
- látky znečišťující vzduch toxicita MeSH
- látky znečišťující životní prostředí metabolismus MeSH
- listy rostlin účinky léků MeSH
- nanočástice toxicita MeSH
- oxidy toxicita MeSH
- semenáček účinky léků MeSH
- sloučeniny kadmia toxicita MeSH
- smrk účinky léků fyziologie MeSH
- teplota * MeSH
- vysoká teplota MeSH
- Publikační typ
- časopisecké články MeSH
Despite the wide application of nanomaterials, toxicity studies of nanoparticles (NP) are often limited to in vitro cell models, and the biological impact of NP exposure in mammals has not been thoroughly investigated. Zinc oxide (ZnO) NPs are commonly used in various consumer products. To evaluate the effects of the inhalation of ZnO NP in mice, we studied splice junction expression in the lungs as a proxy to gene expression changes analysis. Female ICR mice were treated with 6.46 × 104 and 1.93 × 106 NP/cm3 for 3 days and 3 months, respectively. An analysis of differential expression and alternative splicing events in 298 targets (splice junctions) of 68 genes involved in the processes relevant to the biological effects of ZnO NP was conducted using next-generation sequencing. Three days of exposure resulted in the upregulation of IL-6 and downregulation of BID, GSR, NF-kB2, PTGS2, SLC11A2, and TXNRD1 splice junction expression; 3 months of exposure increased the expression of splice junctions in ALDH3A1, APAF1, BID, CASP3, DHCR7, GCLC, GCLM, GSR, GSS, EHHADH, FAS, HMOX-1, IFNγ, NF-kB1, NQO-1, PTGS1, PTGS2, RAD51, RIPK2, SRXN1, TRAF6, and TXNRD1. Alternative splicing of TRAF6 and TXNRD1 was induced after 3 days of exposure to 1.93 × 106 NP/cm3. In summary, we observed changes of splice junction expression in genes involved in oxidative stress, apoptosis, immune response, inflammation, and DNA repair, as well as the induction of alternative splicing in genes associated with oxidative stress and inflammation. Our data indicate the potential negative biological effects of ZnO NP inhalation.
- MeSH
- alternativní sestřih účinky léků MeSH
- aplikace inhalační MeSH
- apoptóza účinky léků MeSH
- buněčná imunita účinky léků MeSH
- buněčný cyklus účinky léků MeSH
- exprese genu účinky léků MeSH
- myši inbrední ICR MeSH
- myši MeSH
- nanočástice toxicita MeSH
- oprava DNA účinky léků MeSH
- oxid zinečnatý toxicita MeSH
- oxidační stres účinky léků MeSH
- plíce metabolismus patologie MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The environmental fate of airborne nanoparticles and their toxicity to plants is not yet fully understood. Pot-grown barley plants with second leaves developed were therefore exposed to CdO nanoparticles (CdONPs) of ecologically relevant size (7-60 nm) and concentration (2.03 ± 0.45 × 10(5) particles cm(-3)) in air for 3 weeks. An experiment was designed to test the effects of different treatments when only leaves (T1); leaves and soil substrate (T2); and leaves, soil, and water supply were exposed to nanoparticles (T3). A fourth, control group of plants was left without treatment (T0). Although CdONPs were directly absorbed by leaves from the air, a part of leaf-allocated Cd was also transported from roots by transpiration flow. Chromatographic assays revealed that CdONPs had a significant effect on total content of primary metabolites (amino acids and saccharides) but no significant effect on total content of secondary metabolites (phenolic compounds, Krebs cycle acids, and fatty acids). In addition, the compositions of individual metabolite classes were affected by CdONP treatment. For example, tryptophan and phenylalanine were the most affected amino acids in both analysed organs, while ferulic acid and isovitexin constituted the polyphenols most affected in leaves. Even though CdONP treatment had no effect on total fatty acids content, there were significant changes in the composition of saturated and unsaturated fatty acids in both the roots and leaves of treated plants. Although the results indicate the most pronounced effect in T3 plants as compared to T1 and T2 plants, even just leaf exposure to CdONPs has the potential to induce changes in plant metabolism.
- MeSH
- aminokyseliny metabolismus MeSH
- apigenin metabolismus MeSH
- fenoly metabolismus MeSH
- ječmen (rod) účinky léků metabolismus MeSH
- kořeny rostlin účinky léků metabolismus MeSH
- kyseliny kumarové metabolismus MeSH
- látky znečišťující půdu toxicita MeSH
- látky znečišťující vodu toxicita MeSH
- listy rostlin účinky léků metabolismus MeSH
- nanočástice toxicita MeSH
- oxidy toxicita MeSH
- sekundární metabolismus účinky léků MeSH
- sloučeniny kadmia toxicita MeSH
- Publikační typ
- časopisecké články MeSH
The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environmental pollution by industrial products such as cadmium oxide (CdO) nanoparticles. Here, we aimed to unravel the CdO nanoparticle destiny upon their entry into lungs by inhalations, with the main focus on the ultrastructural changes that the nanoparticles may cause to tissues of the primary and secondary target organs. We indeed found the CdO nanoparticles to be transported from the lungs into secondary target organs by blood. In lungs, inhaled CdO nanoparticles caused significant alterations in parenchyma tissue including hyperemia, enlarged pulmonary septa, congested capillaries, alveolar emphysema and small areas of atelectasis. Nanoparticles were observed in the cytoplasm of cells lining bronchioles, in the alveolar spaces as well as inside the membranous pneumocytes and in phagosomes of lung macrophages. Nanoparticles even penetrated through the membrane into some organelles including mitochondria and they also accumulated in the cytoplasmic vesicles. In livers, inhalation caused periportal inflammation and local hepatic necrosis. Only minor changes such as diffusely thickened filtration membrane with intramembranous electron dense deposits were observed in kidney. Taken together, inhaled CdO nanoparticles not only accumulated in lungs but they were also transported to other organs causing serious damage at tissue as well as cellular level.
- MeSH
- játra metabolismus patologie ultrastruktura MeSH
- kadmium škodlivé účinky krev MeSH
- ledviny metabolismus patologie ultrastruktura MeSH
- myši MeSH
- nadechnutí * MeSH
- nanočástice škodlivé účinky chemie MeSH
- oxidy škodlivé účinky krev chemie metabolismus MeSH
- plíce metabolismus patologie ultrastruktura MeSH
- slezina metabolismus patologie ultrastruktura MeSH
- sloučeniny kadmia škodlivé účinky krev chemie metabolismus MeSH
- velikost částic MeSH
- vystavení vlivu životního prostředí MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The aim of this study was to assess cadmium and copper uptake by radish (Raphanus sativus) and to test the capability of the diffusive gradient in thin films (DGT) technique to predict bioaccessibility of the metals for this plant. Radish plants were grown in pots filled with uncontaminated control and artificially contaminated soils differing in cadmium and copper contents. Metal concentrations in plants were compared with free ion metal concentrations in soil solution, and concentrations measured by DGT. Significant correlation was found between metal fluxes to plant and metal fluxes into DGT. Pearson correlation coefficient for cadmium was 0.994 and for copper 0.998. The obtained results showed that DGT offers the possibility of simple test procedure for soils and can be used as a physical surrogate for plant uptake.