BACKGROUND: Diffuse midline glioma, H3 K27-altered (DMG) is a fatal tumour that arises in the midline structures of the brain. When located in the pons, it is more commonly referred to as diffuse intrinsic pontine glioma (DIPG). DMG/DIPG is usually diagnosed when children are < 10 years, and it has a median overall survival of < 12 months after diagnosis. Radiological imaging is still the gold standard for DIPG diagnosis while the use of biopsy procedures led to our knowledge on its biology, such as with the identification of the canonical histone H3K27M mutation. However, the need to improve survival encourages the development of non-invasive, fast and inexpensive assays on biofluids for optimizing molecular diagnoses in DMG/DIPG. Here, we propose a rapid, new, imaging and epigenetics-based approach to diagnose DMG/DIPG in the plasma of paediatric patients. METHODS: A total of 20 healthy children (mean age: 10.5 years) and 24 children diagnosed with DMG/DIPG (mean age: 8.5 years) were recruited. Individual histones (H2A, H2B, H3, H4, macroH2A1.1 and macroH2A1.2), histone dimers and nucleosomes were assayed in biofluids by means of a new advanced flow cytometry ImageStream(X)-adapted method. RESULTS: We report a significant increase in circulating histone dimers and tetramers (macroH2A1.1/H2B versus control: p value < 0.0001; macroH2A1.2/H2B versus control: p value < 0.0001; H2A/H2B versus control: p value < 0.0001; H3/H4 versus control: p value = 0.008; H2A/H2B/H3/H4 versus control: p value < 0.0001) and a significant downregulation of individual histones (H2B versus control: p value < 0.0001; H3 versus control: p value < 0.0001; H4 versus control: p value < 0.0001). Moreover, histones were also detectable in the cerebrospinal fluid (CSF) of patients with DMG/DIPG and in the supernatant of SF8628, OPBG-DIPG002 and OPBG-DIPG004 DMG/DIPG cell lines, with patterns mostly similar to each other, but distinct compared to blood plasma. CONCLUSIONS: In summary, we identified circulating histone signatures able to detect the presence of DMG/DIPG in biofluids of children, using a rapid and non-invasive ImageStream(X)-based imaging technology, which may improve diagnosis and benefit the patients.
- MeSH
- difuzní intrinsický pontinní gliom genetika diagnóza krev MeSH
- dítě MeSH
- epigeneze genetická MeSH
- gliom genetika diagnóza krev patologie diagnostické zobrazování MeSH
- histony * genetika metabolismus krev MeSH
- lidé MeSH
- mladiství MeSH
- mutace MeSH
- nádorové biomarkery krev MeSH
- nádory mozkového kmene genetika diagnóza krev diagnostické zobrazování patologie metabolismus MeSH
- předškolní dítě MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Obesity is a major health burden. Preadipocytes proliferate and differentiate in mature adipocytes in the adipogenic process, which could be a potential therapeutic approach for obesity. Deficiency of SIRT6, a stress-responsive protein deacetylase and mono-ADP ribosyltransferase enzyme, blocks adipogenesis. Mutants of SIRT6 (N308K/A313S) were recently linked to the in the long lifespan Ashkenazi Jews. In this study, we aimed to clarify how these new centenarian-associated SIRT6 genetic variants affect adipogenesis at the transcriptional and epigenetic level. METHODS: We analyzed the role of SIRT6 wild-type (WT) or SIRT6 centenarian-associated mutant (N308K/A313S) overexpression in adipogenesis, by creating stably transduced preadipocyte cell lines using lentivirus on the 3T3-L1 model. Histone post-translational modifications (PTM: acetylation, methylation) and transcriptomic changes were analyzed by mass spectrometry (LC-MS/MS) and RNA-Seq, respectively, in 3T3-L1 adipocytes. In addition, the adipogenic process and related signaling pathways were investigated by bioinformatics and biochemical approaches. RESULTS: Overexpression of centenarian-associated SIRT6 mutant increased adipogenic differentiation to a similar extent compared to the WT form. However, it triggered distinct histone PTM profiles in mature adipocytes, with significantly higher acetylation levels, and activated divergent transcriptional programs, including those dependent on signaling related to the sympathetic innervation and to PI3K pathway. 3T3-L1 mature adipocytes overexpressing SIRT6 N308K/A313S displayed increased insulin sensitivity in a neuropeptide Y (NPY)-dependent manner. CONCLUSIONS: SIRT6 N308K/A313S overexpression in mature adipocytes ameliorated glucose sensitivity and impacted sympathetic innervation signaling. These findings highlight the importance of targeting SIRT6 enzymatic activities to regulate the co-morbidities associated with obesity.
- MeSH
- adipogeneze * genetika MeSH
- buňky 3T3-L1 * MeSH
- epigeneze genetická * genetika MeSH
- histony metabolismus genetika MeSH
- lidé MeSH
- mutace MeSH
- myši MeSH
- obezita genetika metabolismus MeSH
- posttranslační úpravy proteinů genetika MeSH
- sirtuiny * genetika metabolismus MeSH
- tukové buňky * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Non-alcoholic fatty liver disease (NAFLD), encompassing fatty liver and its progression into nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC), is one of the rapidly rising health concerns worldwide. SIRT6 is an essential nuclear sirtuin that regulates numerous pathological processes including insulin resistance and inflammation, and recently it has been implicated in the amelioration of NAFLD progression. SIRT6 overexpression protects from formation of fibrotic lesions. However, the underlying molecular mechanisms are not fully delineated. Moreover, new allelic variants of SIRT6 (N308K/A313S) were recently associated with the longevity in Ashkenazi Jews by improving genome maintenance and DNA repair, suppressing transposons and killing cancer cells. Whether these new SIRT6 variants play different or enhanced roles in liver diseases is currently unknown. In this study, we aimed to clarify how these new centenarian-associated SIRT6 genetic variants affect liver metabolism and associated diseases. We present evidence that overexpression of centenarian-associated SIRT6 variants dramatically altered the metabolomic and secretomic profiles of unchallenged immortalized human hepatocytes (IHH). Most amino acids were increased in the SIRT6 N308K/A313S overexpressing IHH when compared to IHH transfected with the SIRT6 wild-type sequence. Several unsaturated fatty acids and glycerophospholipids were increased, and ceramide tended to be decreased upon SIRT6 N308K/A313S overexpression. Furthermore, we found that overexpression of SIRT6 N308K/A313S in a 3D hepatic spheroid model formed by the co-culture of human immortalized hepatocytes (IHH) and hepatic stellate cells (LX2) inhibited collagen deposition and fibrotic gene expression in absence of metabolic or dietary challenges. Hence, our findings suggest that novel longevity associated SIRT6 N308K/A313S variants could favor the prevention of NASH by altering hepatocyte proteome and lipidome.
- MeSH
- hepatocelulární karcinom * metabolismus patologie MeSH
- hepatocyty metabolismus patologie MeSH
- kolagen metabolismus MeSH
- lidé MeSH
- nádory jater * metabolismus patologie MeSH
- nealkoholová steatóza jater * genetika metabolismus patologie MeSH
- senioři nad 80 let MeSH
- sirtuiny * genetika metabolismus MeSH
- století lidé MeSH
- Check Tag
- lidé MeSH
- senioři nad 80 let MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Introduction: Pediatric brain tumours (PBT) are one of the most common malignancies during childhood, with variable severity according to the location and histological type. Certain types of gliomas, such a glioblastoma and diffuse intrinsic pontine glioma (DIPG), have a much higher mortality than ependymoma and medulloblastoma. Early detection of PBT is essential for diagnosis and therapeutic interventions. Liquid biopsies have been demonstrated using cerebrospinal fluid (CSF), mostly restricted to cell free DNA, which display limitations of quantity and integrity. In this pilot study, we sought to demonstrate the detectability and robustness of cell free histones in the CSF. Methods: We collected CSF samples from a pilot cohort of 8 children with brain tumours including DIPG, medulloblastoma, glioblastoma, ependymoma and others. As controls, we collected CSF samples from nine children with unrelated blood malignancies and without brain tumours. We applied a multichannel flow imaging approach on ImageStream(X) to image indiviual histone or histone complexes on different channels. Results: Single histones (H2A, macroH2A1.1, macroH2A1.2 H2B, H3, H4 and histone H3 bearing the H3K27M mutation), and histone complexes are specifically detectable in the CSF of PBT patients. H2A and its variants macroH2A1.1/macroH2A1/2 displayed the strongest signal and abundance, together with disease associated H3K27M. In contrast, mostly H4 is detectable in the CSF of pediatric patients with blood malignancies. Discussion: In conclusion, free histones and histone complexes are detectable with a strong signal in the CSF of children affected by brain tumours, using ImageStream(X) technology and may provide additive diagnostic and predictive information.
- Publikační typ
- časopisecké články MeSH
Accumulation of senescent cells may drive age-associated alterations and pathologies. Senolytics are promising therapeutics that can preferentially eliminate senescent cells. Here, we performed a high-throughput automatized screening (HTS) of the commercial LOPAC®Pfizer library on aphidicolin-induced senescent human fibroblasts, to identify novel senolytics. We discovered the nociceptin receptor FQ opioid receptor (NOP) selective ligand 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole (MCOPPB, a compound previously studied as potential anxiolytic) as the best scoring hit. The ability of MCOPPB to eliminate senescent cells in in vitro models was further tested in mice and in C. elegans. MCOPPB reduced the senescence cell burden in peripheral tissues but not in the central nervous system. Mice and worms exposed to MCOPPB also exhibited locomotion and lipid storage changes. Mechanistically, MCOPPB treatment activated transcriptional networks involved in the immune responses to external stressors, implicating Toll-like receptors (TLRs). Our study uncovers MCOPPB as a NOP ligand that, apart from anxiolytic effects, also shows tissue-specific senolytic effects.
- MeSH
- anxiolytika * farmakologie MeSH
- Caenorhabditis elegans MeSH
- léky proti stárnutí * MeSH
- lidé MeSH
- ligandy MeSH
- myši MeSH
- narkotika - antagonisté farmakologie MeSH
- opioidní analgetika MeSH
- opioidní peptidy MeSH
- piperidiny farmakologie MeSH
- receptory opiátové MeSH
- rychlé screeningové testy MeSH
- stárnutí buněk * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in children and adolescents, increasing the risk of its progression toward nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. There is an urgent need for noninvasive early diagnostic and prognostic tools such as epigenetic marks (epimarks), which would replace liver biopsy in the future. We used plasma samples from 67 children with biopsy-proven NAFLD, and as controls we used samples from 20 children negative for steatosis by ultrasound. All patients were genotyped for patatin-like phospholipase domain containing 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), membrane bound O-acyltransferase domain containing 7 (MBOAT7), and klotho-β (KLB) gene variants, and data on anthropometric and biochemical parameters were collected. Furthermore, plasma cell-free DNA (cfDNA) methylation was quantified using a commercially available kit, and ImageStream(X) was used for the detection of free circulating histone complexes and variants. We found a significant enrichment of the levels of histone macroH2A1.2 in the plasma of children with NAFLD compared to controls, and a strong correlation between cfDNA methylation levels and NASH. Receiver operating characteristic curve analysis demonstrated that combination of cfDNA methylation, PNPLA3 rs738409 variant, coupled with either high-density lipoprotein cholesterol or alanine aminotransferase levels can strongly predict the progression of pediatric NAFLD to NASH with area under the curve >0.87. Conclusion: Our pilot study combined epimarks and genetic and metabolic markers for a robust risk assessment of NAFLD development and progression in children, offering a promising noninvasive tool for the consistent diagnosis and prognosis of pediatric NAFLD. Further studies are necessary to identify their pathogenic origin and function.
- MeSH
- dítě MeSH
- histony genetika MeSH
- lidé MeSH
- lipasa genetika MeSH
- membránové proteiny genetika MeSH
- metylace DNA genetika MeSH
- mladiství MeSH
- nealkoholová steatóza jater * diagnóza MeSH
- pilotní projekty MeSH
- volné cirkulující nukleové kyseliny * metabolismus MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: GDF11 is a member of the TGF-β superfamily that was recently implicated as potential "rejuvenating" factor, which can ameliorate metabolic disorders. The main objective of the presented study was to closely characterize the role of GDF11 signaling in the glucose homeostasis and in the differentiation of white adipose tissue. METHODS: We performed microscopy imaging, biochemical and transcriptomic analyses of adipose tissues of 9 weeks old ob/ob mice and murine and human pre-adipocyte cell lines. RESULTS: Our in vivo experiments employing GDF11 treatment in ob/ob mice showed improved glucose/insulin homeostasis, decreased weight gain and white adipocyte size. Furthermore, GDF11 treatment inhibited adipogenesis in pre-adipocytes by ALK5-SMAD2/3 activation in cooperation with the WNT/β-catenin pathway, whose inhibition resulted in adipogenic differentiation. Lastly, we observed significantly elevated levels of the adipokine hormone adiponectin and increased glucose uptake by mature adipocytes upon GDF11 exposure. CONCLUSION: We show evidence that link GDF11 to adipogenic differentiation, glucose, and insulin homeostasis, which are pointing towards potential beneficial effects of GDF11-based "anti-obesity" therapy.
- MeSH
- adipogeneze * MeSH
- adiponektin metabolismus MeSH
- beta-katenin * metabolismus MeSH
- buněčná diferenciace fyziologie MeSH
- glukosa metabolismus MeSH
- inzulin metabolismus MeSH
- kostní morfogenetické proteiny metabolismus MeSH
- lidé MeSH
- myši MeSH
- protein Smad2 MeSH
- protein Smad3 MeSH
- receptory regulované proteiny Smad MeSH
- růstové diferenciační faktory metabolismus MeSH
- signální dráha Wnt MeSH
- TGF-beta receptor I. typu MeSH
- transformující růstový faktor beta metabolismus MeSH
- tukové buňky metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Studies over the past 30 years have revealed that adipose tissue is the major endocrine and paracrine organ of the human body. Arguably, adiopobiology has taken its reasonable place in studying obesity and related cardiometabolic diseases (CMDs), including Alzheimer's disease (AD), which is viewed herein as a neurometabolic disorder. The pathogenesis and therapy of these diseases are multiplex at basic, clinical and translational levels. Our present goal is to describe new developments in cardiometabolic and neurometabolic adipobiology. Accordingly, we focus on adipose- and/or skeletal muscle-derived signaling proteins (adipsin, adiponectin, nerve growth factor, brain-derived neuroptrophic factor, neurotrophin-3, irisin, sirtuins, Klotho, neprilysin, follistatin-like protein-1, meteorin-like (metrnl), as well as growth differentiation factor 11) as examples of metabotrophic factors (MTFs) implicated in the pathogenesis and therapy of obesity and related CMDs. We argue that these pathologies are MTF-deficient diseases. In 1993 the "vascular hypothesis of AD" was published and in the present review we propose the "vasculometabolic hypothesis of AD." We discuss how MTFs could bridge CMDs and neurodegenerative diseases, such as AD. Greater insights on how to manage the MTF network would provide benefits to the quality of human life.
- MeSH
- adipokiny metabolismus MeSH
- cílená molekulární terapie metody MeSH
- lidé MeSH
- metabolický syndrom farmakoterapie metabolismus MeSH
- neurodegenerativní nemoci farmakoterapie metabolismus MeSH
- neuropeptidy metabolismus MeSH
- neurotrofní faktory metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is increasingly prevalent and represents a growing challenge in terms of prevention and treatment. A minority of affected patients develops inflammation, subsequently fibrosis, cirrhosis and hepatocellular carcinoma (HCC). HCC is a leading cause of cancer-related death. An increased number of senescent cells correlate with age-related tissue degeneration during NAFLD-induced HCC. Senolytics are promising agents that target selectively senescent cells. Previous studies showed that whereas a combination of the senolytic drugs dasatinib and quercetin (D + Q) reduced NAFLD in mice, D + Q lacked efficacy in removing doxorubicin-induced β-gal-positive senescent cells in human HCC xenografted mice. Whether D + Q has an effect on the age-associated spectrum of NAFLD-inflammation-HCC remains unknown. METHODS: Here, we utilized an established model of age- and obesity-associated HCC, the low dose diethylnitrosamine (DEN)/high fat diet (HFD), a regimen promoting liver inflammation and tumorigenesis over a long period of 9 months. Four groups of mice each were created: group 1 included control untreated mice; group 2 included mice treated with D + Q; group 3 included mice undergoing the DEN/HFD protocol; group 4 included mice undergoing the DEN/HFD protocol with the administration of D + Q. At the end of the chemical/dietary regimen, we analyzed liver damage and cell senescence by histopathology, qPCR and immunoblotting approaches. RESULTS: Unexpectedly, D + Q worsened liver disease progression in the DEN/HFD mouse model, slightly increasing histological damage and tumorigenesis, while having no effect on senescent cells removal. CONCLUSIONS: In summary, using an animal model that fully recapitulates NAFLD, we demonstrate that these compounds are ineffective against age-associated NAFLD-induced HCC. Video Abstract.
- MeSH
- dasatinib škodlivé účinky MeSH
- dieta s vysokým obsahem tuků MeSH
- diethylnitrosamin MeSH
- léky proti stárnutí škodlivé účinky MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- nealkoholová steatóza jater krev genetika patologie MeSH
- nemoci jater krev genetika patologie MeSH
- obezita krev genetika patologie MeSH
- progrese nemoci * MeSH
- quercetin škodlivé účinky MeSH
- regulace genové exprese MeSH
- stárnutí genetika patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hepatocellular carcinoma (HCC) is one of the fastest-growing causes of cancer-related mortalities worldwide and this trend is mimicked by the surge of non-alcoholic fatty liver disease (NAFLD). Altered hepatic lipid metabolism promotes HCC development through inflammation and activation of oncogenes. GDF11 is a member of the TGF-β superfamily and recent data have implicated GDF11 as an anti-aging factor that can alleviate high-fat diet induced obesity, hyperglycemia, insulin resistance and NAFLD. However, its role in hepatic lipid metabolism is still not fully delineated. The aim of the present study was to characterize the role of GDF11 in hepatic and HCC cells lipid accumulation. To achieve this, we performed imaging, biochemical, lipidomic, and transcriptomic analyses in primary hepatocytes and in HCC cells treated with GDF11 to study the GDF11-activated signaling pathways. GDF11 treatment rapidly triggered ALK5-dependent SMAD2/3 nuclear translocation and elevated lipid droplets in HCC cells, but not in primary hepatocytes. In HCC cells, ALK5 inhibition hampered GDF11-mediated SMAD2/3 signaling and attenuated lipid accumulation. Using ultra-high-performance liquid chromatography/mass spectrometry, we detected increased accumulation of longer acyl-chain di/tri-acylglycerols and glycerophospholipids. Unbiased transcriptomic analysis identified TGF-β and PI3K-AKT signaling among the top pathways/cellular processes activated in GDF11 treated HCC cells. In summary, GDF11 supplementation promotes pro-lipogenic gene expression and lipid accumulation in HCC cells. Integration of our "omics" data pointed to a GDF11-induced upregulation of de novo lipogenesis through activation of ALK5/SMAD2/3/PI3K-AKT pathways. Thus, GDF11 could contribute to metabolic reprogramming and dysregulation of lipid metabolism in HCC cells, without effects on healthy hepatocytes.
- MeSH
- hepatocelulární karcinom patologie MeSH
- hepatocyty metabolismus MeSH
- kostní morfogenetické proteiny metabolismus MeSH
- lidé MeSH
- lipogeneze MeSH
- metabolismus lipidů * MeSH
- nádorové buněčné linie MeSH
- nádory jater patologie MeSH
- protein Smad2 metabolismus MeSH
- růstové diferenciační faktory metabolismus MeSH
- signální transdukce * MeSH
- TGF-beta receptor I. typu metabolismus MeSH
- upregulace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH