INTRODUCTION AND OBJECTIVES: Hepatocellular carcinoma (HCC) represents one of the most common cancers worldwide. A considerable proportion of HCC is caused by cirrhosis related to metabolic dysfunction-associated steatohepatitis (MASH). Due to the increasing prevalence of metabolic syndrome, it is estimated that MASH-related HCC will become the most prevalent etiology of HCC. Currently, HCC screening is based on liver ultrasonography; however, the sensitivity of ultrasonography for early HCC stages in obese patients only reaches 23 %. To date, no studied biomarker shows sufficient efficacy for screening purposes. Nevertheless, the usage of spectroscopic methods offers a new perspective, as its potential use would provide cheap, fast analysis of samples such as blood plasma. MATERIAL AND METHODS: We employed a combination of conventional and chiroptical spectroscopic methods to study differences between the blood plasma of obese cirrhotic patients with and without HCC. We included 20 subjects with HCC and 17 without evidence of liver cancer, all of them with body mass index ≥ 30. RESULTS: Sensitivities and specificities reached values as follows: 0.780 and 0.905 for infrared spectroscopy, 0.700 and 0.767 for Raman spectroscopy, 0.840 and 0.743 for electronic circular dichroism, and 0.805 and 0.923 for Raman optical activity. The final combined classification model based on all spectroscopic methods reached a sensitivity of 0.810 and a specificity of 0.857, with the highest area under the receiver operating characteristic curve among all models (0.961). CONCLUSIONS: We suggest that this approach can be used effectively as a diagnostic tool in patients who are not examinable by liver ultrasonography. CLINICAL TRIAL REGISTRATION: NCT04221347.
- MeSH
- časná detekce nádoru * metody MeSH
- dospělí MeSH
- hepatocelulární karcinom * krev diagnóza diagnostické zobrazování MeSH
- index tělesné hmotnosti MeSH
- jaterní cirhóza krev komplikace diagnóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery krev MeSH
- nádory jater * krev diagnóza diagnostické zobrazování MeSH
- obezita * komplikace krev MeSH
- prediktivní hodnota testů MeSH
- Ramanova spektroskopie MeSH
- ROC křivka MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
At present, Alzheimer's disease is detected mainly using psychological tests, which can only confirm the disease in its more advanced phases. Therefore, bioanalytical possibilities for detecting this disease earlier are being investigated. To date, the results of analyses, which focus mainly on the study of lipids and proteins either in cerebrospinal fluid or much less often in blood plasma, do not provide satisfactory results. In addition, cerebrospinal fluid sampling is uncomfortable for the patients and involves many health risks. In this work, we deal with proteomic analysis using Matrix-Assisted Laser Desorption/Ionisation-Time of Flight and Liquid Chromatography coupled to tandem Mass Spectrometry of blood plasma with a focus on various ways of preanalytical sample treatments. This should lead to results improvement and facilitate the subsequent evaluation using principal component analysis and partial least squares discriminant analysis. The obtained results indicate the direction of further research, namely the study of interactions between proteins and lipids contained in blood plasma. These substances may be regarded as potential biomarkers allowing for the diagnosis of Alzheimer ́s disease even in its early stages.
- MeSH
- Alzheimerova nemoc * krev diagnóza MeSH
- biologické markery krev MeSH
- chromatografie kapalinová metody MeSH
- krevní plazma chemie MeSH
- krevní proteiny analýza MeSH
- lidé středního věku MeSH
- lidé MeSH
- lipidy krev MeSH
- metabolismus lipidů MeSH
- proteomika metody MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The association of pancreatic cancer with type 2 diabetes mellitus was investigated by 1H NMR metabolomic analysis of blood plasma. Concentration data of 58 metabolites enabled discrimination of pancreatic cancer (PC) patients from healthy controls (HC) and long-term type 2 diabetes mellitus (T2DM) patients. A panel of eight metabolites was proposed and successfully tested for group discrimination. Furthermore, a prediction model for the identification of at-risk individuals for future development of pancreatic cancer was built and tested on recent-onset diabetes mellitus (RODM) patients. Six of 59 RODM samples were assessed as PC with an accuracy of more than 80%. The health condition of these individuals was re-examined, and in four cases, a correlation to the prediction was found. The current health condition can be retrospectively attributed to misdiagnosed pancreatogenic diabetes or to early-stage pancreatic cancer.
- MeSH
- časná detekce nádoru MeSH
- diabetes mellitus 2. typu * diagnóza MeSH
- diabetes mellitus * MeSH
- lidé MeSH
- metabolomika MeSH
- nádory slinivky břišní * diagnóza MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- retrospektivní studie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVES: With over 35 million cases worldwide, Alzheimer's disease (AD) represents the main cause of dementia. The differentiation of AD from other types of dementia is challenging and its early diagnosis is complicated. The established biomarkers are not only based on the invasive collection of cerebrospinal fluid, but also lack sufficient sensitivity and specificity. Therefore, much current effort is aimed at the identification of new biomarkers of AD in peripheral blood. DESIGN AND METHODS: We focused on blood-based analyses using chiroptical spectroscopy (Raman optical activity, electronic circular dichroism) supplemented with conventional vibrational spectroscopy (infrared, Raman) and metabolomics (high-performance liquid chromatography with a high-resolution mass detection). RESULTS: This unique approach enabled us to identify the spectral pattern of AD and variations in metabolite levels. Subsequent linear discriminant analysis of the spectral data resulted in differentiation between the AD patients and control subjects. CONCLUSIONS: It may be stated that this less invasive approach has strong potential for the identification of disease-related changes within essential plasmatic biomolecules and metabolites.
- MeSH
- Alzheimerova nemoc krev diagnóza MeSH
- biologické markery krev MeSH
- cirkulární dichroismus MeSH
- diskriminační analýza MeSH
- krevní proteiny analýza MeSH
- lidé středního věku MeSH
- lidé MeSH
- metabolomika MeSH
- Ramanova spektroskopie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: Altered amyloid metabolism and mitochondrial dysfunction play key roles in the development of Alzheimer's disease (AD). We asked whether an association exists between disturbed platelet mitochondrial respiration and the plasma concentrations of Aβ40 and Aβ42 in patients with AD. DESIGN AND METHODS: Plasma Aβ40 and Aβ42 concentrations and mitochondrial respiration in intact and permeabilized platelets were measured in 50 patients with AD, 15 patients with vascular dementia and 25 control subjects. A pilot longitudinal study was performed to monitor the progression of AD in a subgroup 11 patients with AD. RESULTS: The mean Aβ40, Aβ42 and Aβ42/Aβ40 levels were not significantly altered in patients with AD compared with controls. The mitochondrial respiratory rate in intact platelets was significantly reduced in patients with AD compared to controls, particularly the basal respiratory rate, maximum respiratory capacity, and respiratory reserve; however, the flux control ratio for basal respiration was increased. A correlation between the plasma Aβ42 concentration and mitochondrial respiration in both intact and permeabilized platelets differs in controls and patients with AD. CONCLUSIONS: Based on our data, (1) mitochondrial respiration in intact platelets, but not the Aβ level itself, may be included in a panel of biomarkers for AD; (2) dysfunctional mitochondrial respiration in platelets is not explained by changes in plasma Aβ concentrations; and (3) the association between mitochondrial respiration in platelets and plasma Aβ levels differs in patients with AD and controls. The results supported the hypothesis that mitochondrial dysfunction is the primary factor contributing to the development of AD.
- MeSH
- Alzheimerova nemoc krev komplikace diagnóza MeSH
- amyloidní beta-protein krev MeSH
- biologické markery krev MeSH
- buněčné dýchání MeSH
- lidé středního věku MeSH
- lidé MeSH
- mitochondriální nemoci krev komplikace diagnóza MeSH
- mitochondrie metabolismus MeSH
- peptidové fragmenty krev MeSH
- senioři MeSH
- spotřeba kyslíku MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Due to the trend of prolonged lifespan leading to higher incidence of age-related diseases, the demand for reliable biomarkers of dementia rises. In this review, we present novel biomarkers of high potential, especially those found in blood, urine or saliva, which could lead to a more comfortable patient experience and better time- and cost-effectivity, compared to the currently used diagnostic methods. We focus on biomarkers that might allow for the detection of Alzheimer's disease before its clinical manifestations. Such biomarkers might be helpful for better understanding the etiology of the disease and identifying its risk factors. Moreover, it could be a base for developing new treatment or at least help to prolong the presymptomatic stage in patients suffering from Alzheimer's disease. As potential candidates, we present, for instance, neurofilament light in both cerebrospinal fluid and blood plasma or amyloid β in plasma. Above all, we provide an overview of different approaches to the diagnostics, analyzing patient's biofluids as a whole using molecular spectroscopy. Infrared and Raman spectroscopy and especially chiroptical methods provide information not only on the chemical composition, but also on molecular structure. Therefore, these techniques are promising for the diagnostics of Alzheimer's disease, as the accumulation of amyloid β in abnormal conformation is one of the hallmarks of this disease.
- MeSH
- Alzheimerova nemoc diagnóza MeSH
- amyloidní beta-protein analýza MeSH
- biologické markery analýza MeSH
- lidé MeSH
- proteiny nervové tkáně analýza MeSH
- sliny chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
A combination of tacrine and tryptophan led to the development of a new family of heterodimers as multi-target agents with potential to treat Alzheimer's disease. Based on the in vitro biological profile, compound S-K1035 was found to be the most potent inhibitor of human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBChE), demonstrating balanced IC50 values of 6.3 and 9.1 nM, respectively. For all the tacrine-tryptophan heterodimers, favorable inhibitory effect on hAChE as well as on hBChE was coined to the optimal spacer length ranging from five to eight carbon atoms between these two pharmacophores. S-K1035 also showed good ability to inhibit Aβ42 self-aggregation (58.6 ± 5.1% at 50 μM) as well as hAChE-induced Aβ40 aggregation (48.3 ± 6.3% at 100 μM). The X-ray crystallographic analysis of TcAChE in complex with S-K1035 pinpointed the utility of the hybridization strategy applied and the structures determined with the two K1035 enantiomers in complex with hBChE could explain the higher inhibition potency of S-K1035. Other in vitro evaluations predicted the ability of S-K1035 to cross blood-brain barrier and to exert a moderate inhibition potency against neuronal nitric oxide synthase. Based on the initial promising biochemical data and a safer in vivo toxicity compared to tacrine, S-K1035 was administered to scopolamine-treated rats being able to dose-dependently revert amnesia.
- MeSH
- acetylcholinesterasa metabolismus MeSH
- Alzheimerova nemoc farmakoterapie metabolismus MeSH
- amyloidní beta-protein antagonisté a inhibitory metabolismus MeSH
- bludiště - učení účinky léků MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory chemická syntéza chemie farmakologie MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- ligandy MeSH
- molekulární struktura MeSH
- neuroprotektivní látky chemická syntéza chemie farmakologie MeSH
- potkani Wistar MeSH
- proteinové agregáty účinky léků MeSH
- takrin chemie farmakologie MeSH
- tryptofan chemie farmakologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH