Mitochondrial membrane protein-associated neurodegeneration (MPAN) is an ultraorphan neurogenetic disease from the group of neurodegeneration with brain iron accumulation (NBIA) disorders. Here we report cross-sectional and longitudinal data to define the phenotype, to assess disease progression and to estimate sample sizes for clinical trials. We enrolled patients with genetically confirmed MPAN from the Treat Iron-Related Childhood-Onset Neurodegeneration (TIRCON) registry and cohort study, and from additional sites. Linear mixed-effect modelling (LMEM) was used to calculate annual progression rates for the Unified Parkinson's Disease Rating Scale (UPDRS), Barry-Albright Dystonia (BAD) scale, Schwab and England Activities of Daily Living (SE-ADL) scale and the Pediatric Quality of Life Inventory (PedsQL). We investigated 85 MPAN patients cross-sectionally, with functional outcome data collected in 45. Median age at onset was 9 years and the median diagnostic delay was 5 years. The most common findings were gait disturbance (99%), pyramidal involvement (95%), dysarthria (90%), vision disturbances (82%), with all but dysarthria presenting early in the disease course. After 16 years with the disease, 50% of patients were wheelchair dependent. LMEM showed an annual progression rate of 4.5 points in total UPDRS. The total BAD scale score showed no significant progression over time. The SE-ADL scale and the patient- and parent-reported PedsQL showed a decline of 3.9%, 2.14 and 2.05 points, respectively. No patient subpopulations were identified based on longitudinal trajectories. Our cross-sectional results define the order of onset and frequency of symptoms in MPAN, which will inform the diagnostic process, help to shorten diagnostic delay and aid in counselling patients, parents and caregivers. Our longitudinal findings define the natural history of MPAN, reveal the most responsive outcomes and highlight the need for an MPAN-specific rating approach. Our sample size estimations inform the design of upcoming clinical trials.
- MeSH
- činnosti denního života MeSH
- dítě MeSH
- dysartrie MeSH
- dystonické poruchy * MeSH
- dystonie * MeSH
- fenotyp MeSH
- kohortové studie MeSH
- kvalita života MeSH
- lidé MeSH
- membránové proteiny genetika MeSH
- mitochondriální membrány MeSH
- mutace genetika MeSH
- neurodegenerativní nemoci * genetika MeSH
- opožděná diagnóza MeSH
- průřezové studie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Pantothenate kinase-associated neurodegeneration (PKAN) currently has no approved treatments. OBJECTIVES: The Fosmetpantotenate Replacement Therapy pivotal trial examined whether treatment with fosmetpantotenate improves PKAN symptoms and stabilizes disease progression. METHODS: This randomized, double-blind, placebo-controlled, multicenter study evaluated fosmetpantotenate, 300 mg oral dose three times daily, versus placebo over a 24-week double-blind period. Patients with pathogenic variants of PANK2, aged 6 to 65 years, with a score ≥6 on the PKAN-Activities of Daily Living (PKAN-ADL) scale were enrolled. Patients were randomized to active (fosmetpantotenate) or placebo treatment, stratified by weight and age. The primary efficacy endpoint was change from baseline at week 24 in PKAN-ADL. RESULTS: Between July 23, 2017, and December 18, 2018, 84 patients were randomized (fosmetpantotenate: n = 41; placebo: n = 43); all 84 patients were included in the analyses. Six patients in the placebo group discontinued treatment; two had worsening dystonia, two had poor compliance, and two died of PKAN-related complications (aspiration during feeding and disease progression with respiratory failure, respectively). Fosmetpantotenate and placebo group PKAN-ADL mean (standard deviation) scores were 28.2 (11.4) and 27.4 (11.5) at baseline, respectively, and were 26.9 (12.5) and 24.5 (11.8) at week 24, respectively. The difference in least square mean (95% confidence interval) at week 24 between fosmetpantotenate and placebo was -0.09 (-1.69 to 1.51; P = 0.9115). The overall incidence of treatment-emergent serious adverse events was similar in the fosmetpantotenate (8/41; 19.5%) and placebo (6/43; 14.0%) groups. CONCLUSIONS: Treatment with fosmetpantotenate was safe but did not improve function assessed by the PKAN-ADL in patients with PKAN. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
- MeSH
- činnosti denního života MeSH
- dvojitá slepá metoda MeSH
- Hallervordenův-Spatzův syndrom * farmakoterapie genetika MeSH
- kyselina pantothenová analogy a deriváty MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
OBJECTIVES: The majority of people with suspected genetic dystonia remain undiagnosed after maximal investigation, implying that a number of causative genes have not yet been recognized. We aimed to investigate this paucity of diagnoses. METHODS: We undertook weighted burden analysis of whole-exome sequencing (WES) data from 138 individuals with unresolved generalized dystonia of suspected genetic etiology, followed by additional case-finding from international databases, first for the gene implicated by the burden analysis (VPS16), and then for other functionally related genes. Electron microscopy was performed on patient-derived cells. RESULTS: Analysis revealed a significant burden for VPS16 (Fisher's exact test p value, 6.9 × 109 ). VPS16 encodes a subunit of the homotypic fusion and vacuole protein sorting (HOPS) complex, which plays a key role in autophagosome-lysosome fusion. A total of 18 individuals harboring heterozygous loss-of-function VPS16 variants, and one with a microdeletion, were identified. These individuals experienced early onset progressive dystonia with predominant cervical, bulbar, orofacial, and upper limb involvement. Some patients had a more complex phenotype with additional neuropsychiatric and/or developmental comorbidities. We also identified biallelic loss-of-function variants in VPS41, another HOPS-complex encoding gene, in an individual with infantile-onset generalized dystonia. Electron microscopy of patient-derived lymphocytes and fibroblasts from both patients with VPS16 and VPS41 showed vacuolar abnormalities suggestive of impaired lysosomal function. INTERPRETATION: Our study strongly supports a role for HOPS complex dysfunction in the pathogenesis of dystonia, although variants in different subunits display different phenotypic and inheritance characteristics. ANN NEUROL 2020;88:867-877.
- MeSH
- dospělí MeSH
- dystonie genetika patologie MeSH
- exom genetika MeSH
- fibroblasty patologie MeSH
- genetická predispozice k nemoci genetika MeSH
- genetická variace MeSH
- lidé středního věku MeSH
- lidé MeSH
- lyzozomální nemoci z ukládání genetika patologie MeSH
- mutace genetika MeSH
- osobní újma zaviněná nemocí MeSH
- rodokmen MeSH
- vezikulární transportní proteiny genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Mitochondrial membrane protein-associated neurodegeneration is an autosomal-recessive disorder caused by C19orf12 mutations and characterized by iron deposits in the basal ganglia. OBJECTIVES: The aim of this study was to quantify iron concentrations in deep gray matter structures using quantitative susceptibility mapping MRI and to characterize metabolic abnormalities in the pyramidal pathway using 1 H MR spectroscopy in clinically manifesting membrane protein-associated neurodegeneration patients and asymptomatic C19orf12 gene mutation heterozygous carriers. METHODS: We present data of 4 clinically affected membrane protein-associated neurodegeneration patients (mean age: 21.0 ± 2.9 years) and 9 heterozygous gene mutation carriers (mean age: 50.4 ± 9.8 years), compared to age-matched healthy controls. MRI assessments were performed on a 7.0 Tesla whole-body system, consisting of whole-brain gradient-echo scans and short echo time, single-volume MR spectroscopy in the white matter of the precentral/postcentral gyrus. Quantitative susceptibility mapping, a surrogate marker for iron concentration, was performed using a state-of-the-art multiscale dipole inversion approach with focus on the globus pallidus, thalamus, putamen, caudate nucleus, and SN. RESULTS AND CONCLUSION: In membrane protein-associated neurodegeneration patients, magnetic susceptibilities were 2 to 3 times higher in the globus pallidus (P = 0.02) and SN (P = 0.02) compared to controls. In addition, significantly higher magnetic susceptibility was observed in the caudate nucleus (P = 0.02). Non-manifesting heterozygous mutation carriers exhibited significantly increased magnetic susceptibility (relative to controls) in the putamen (P = 0.003) and caudate nucleus (P = 0.001), which may be an endophenotypic marker of genetic heterozygosity. MR spectroscopy revealed significantly increased levels of glutamate, taurine, and the combined concentration of glutamate and glutamine in membrane protein-associated neurodegeneration, which may be a correlate of corticospinal pathway dysfunction frequently observed in membrane protein-associated neurodegeneration patients. © 2019 International Parkinson and Movement Disorder Society.
- MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- membránové proteiny genetika MeSH
- mitochondriální membrány metabolismus MeSH
- mitochondriální proteiny genetika MeSH
- mitochondrie metabolismus MeSH
- mozek metabolismus patologie MeSH
- mutace genetika MeSH
- železo metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Pantothenate kinase-associated neurodegeneration (PKAN) is a rare genetic disorder characterised by progressive generalised dystonia and brain iron accumulation. We assessed whether the iron chelator deferiprone can reduce brain iron and slow disease progression. METHODS: We did an 18-month, randomised, double-blind, placebo-controlled trial (TIRCON2012V1), followed by a pre-planned 18-month, open-label extension study, in patients with PKAN in four hospitals in Germany, Italy, England, and the USA. Patients aged 4 years or older with a genetically confirmed diagnosis of PKAN, a total score of at least 3 points on the Barry-Albright Dystonia (BAD) scale, and no evidence of iron deficiency, neutropenia, or abnormal hepatic or renal function, were randomly allocated (2:1) to receive an oral solution of either deferiprone (30 mg/kg per day divided into two equal doses) or placebo for 18 months. Randomisation was done with a centralised computer random number generator and with stratification based on age group at onset of symptoms. Patients were allocated to groups by a randomisation team not masked for study intervention that was independent of the study. Patients, caregivers, and investigators were masked to treatment allocation. Co-primary endpoints were the change from baseline to month 18 in the total score on the BAD scale (which measures severity of dystonia in eight body regions) and the score at month 18 on the Patient Global Impression of Improvement (PGI-I) scale, which is a patient-reported interpretation of symptom improvement. Efficacy analyses were done on all patients who received at least one dose of the study drug and who provided a baseline and at least one post-baseline efficacy assessment. Safety analyses were done for all patients who received at least one dose of the study drug. Patients who completed the randomised trial were eligible to enrol in a single-arm, open-label extension study of another 18 months, in which all participants received deferiprone with the same regimen as the main study. The trial was registered on ClinicalTrials.gov, number NCT01741532, and EudraCT, number 2012-000845-11. FINDINGS: Following a screening of 100 prospective patients, 88 were randomly assigned to the deferiprone group (n=58) or placebo group (n=30) between Dec 13, 2012, and April 21, 2015. Of these, 76 patients completed the study (49 in the deferiprone group and 27 in the placebo group). After 18 months, the BAD score worsened by a mean of 2·48 points (SE 0·63) in patients in the deferiprone group versus 3·99 points (0·82) for patients in the control group (difference -1·51 points, 95% CI -3·19 to 0·16, p=0·076). No subjective change was detected as assessed by the PGI-I scale: mean scores at month 18 were 4·6 points (SE 0·3) for patients in the deferiprone group versus 4·7 points (0·4) for those in the placebo group (p=0·728). In the extension study, patients continuing deferiprone retained a similar rate of disease progression as assessed by the BAD scale (1·9 points [0·5] in the first 18 months vs 1·4 points [0·4] in the second 18 months, p=0·268), whereas progression in patients switching from placebo to deferiprone seemed to slow (4·4 points [1·1] vs 1·4 points [0·9], p=0·021). Patients did not detect a change in their condition after the additional 18 months of treatment as assessed by the PGI-I scale, with mean scores of 4·1 points [0·2] in the deferiprone-deferiprone group and of 4·7 points [0·3] in the placebo-deferiprone group. Deferiprone was well tolerated and adverse events were similar between the treatment groups, except for anaemia, which was seen in 12 (21%) of 58 patients in the deferiprone group, but was not seen in any patients in the placebo group. No patient discontinued therapy because of anaemia, and three discontinued because of moderate neutropenia. There was one death in each group of the extension study and both were secondary to aspiration. Neither of these events was considered related to deferiprone use. INTERPRETATION: Deferiprone was well tolerated, achieved target engagement (lowering of iron in the basal ganglia), and seemed to somewhat slow disease progression at 18 months, although not significantly, as assessed by the BAD scale. These findings were corroborated by the results of an additional 18 months of treatment in the extension study. The subjective PGI-I scale was largely unchanged during both study periods, indicating that might not be an adequate tool for assessment of disease progression in patients with PKAN. Our trial provides the first indication of a decrease in disease progression in patients with neurodegeneration with brain iron accumulation. The extensive information collected and long follow-up of patients in the trial will improve the definition of appropriate endpoints, increase the understanding of the natural history, and thus help to shape the design of future trials in this ultra-orphan disease. FUNDING: European Commission, US Food and Drug Administration, and ApoPharma Inc.
- MeSH
- chelátory železa škodlivé účinky terapeutické užití MeSH
- deferipron škodlivé účinky terapeutické užití MeSH
- dítě MeSH
- dospělí MeSH
- dvojitá slepá metoda MeSH
- Hallervordenův-Spatzův syndrom farmakoterapie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- předškolní dítě MeSH
- progrese nemoci MeSH
- výsledek terapie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH