Multipotent mesenchymal stromal cells (MSCs) can be considered an accessible therapeutic tool for regenerative medicine. Here, we compared the growth kinetics, immunophenotypic and immunomodulatory properties, gene expression and secretome profile of MSCs derived from human adult bone marrow (BM-MSCs), adipose tissue (AT-MSCs) and Wharton's jelly (WJ-MSCs) cultured in clinically-relevant conditions, with the focus on the neuroregenerative potential. All the cell types were positive for CD10/CD29/CD44/CD73/CD90/CD105/HLA-ABC and negative for CD14/CD45/CD235a/CD271/HLA-DR/VEGFR2 markers, but they differed in the expression of CD34/CD133/CD146/SSEA-4/MSCA-1/CD271/HLA-DR markers. BM-MSCs displayed the highest immunomodulatory activity compared to AT- and WJ-MSCs. On the other hand, BM-MSCs secreted the lower content and had the lower gene expression of neurotrophic growth factors compared to other cell lines, which may be caused by the higher sensitivity of BM-MSCs to nutrient limitations. Despite the differences in growth factor secretion, the MSC secretome derived from all cell sources had a pronounced neurotrophic potential to stimulate the neurite outgrowth of DRG-neurons and reduce the cell death of neural stem/progenitor cells after H2O2 treatment. Overall, our study provides important information for the transfer of basic MSC research towards clinical-grade manufacturing and therapeutic applications.
- MeSH
- buněčná diferenciace * MeSH
- buňky kostní dřeně cytologie metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie metabolismus MeSH
- nervové kmenové buňky cytologie metabolismus MeSH
- proliferace buněk MeSH
- regenerace nervu * MeSH
- tuková tkáň cytologie metabolismus MeSH
- Whartonův rosol cytologie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Extracellular matrix (ECM) hydrogels, produced by tissue decellularization are natural injectable materials suitable for neural tissue repair. However, the rapid biodegradation of these materials may disrupt neural tissue reconstruction in vivo. The aim of this study was to improve the stability of the previously described ECM hydrogel derived from human umbilical cord using genipin and N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), crosslinking at concentration of 0.5-10 mM. The hydrogels, crosslinked by genipin (ECM/G) or EDC (ECM/D), were evaluated in vitro in terms of their mechanical properties, degradation stability and biocompatibility. ECM/G, unlike ECM/D, crosslinked hydrogels revealed improved rheological properties when compared to uncrosslinked ECM. Both ECM/G and ECM/D slowed down the gelation time and increased the resistance against in vitro enzymatic degradation, while genipin crosslinking was more effective than EDC. Crosslinkers concentration of 1 mM enhanced the in vitro bio-stability of both ECM/G and ECM/D without affecting mesenchymal stem cell proliferation, axonal sprouting or neural stem cell growth and differentiation. Moreover, when injected into cortical photochemical lesion, genipin allowed in situ gelation and improved the retention of ECM for up to 2 weeks without any adverse tissue response or enhanced inflammatory reaction. In summary, we demonstrated that genipin, rather than EDC, improved the bio-stability of injectable ECM hydrogel in biocompatible concentration, and that ECM/G has potential as a scaffold for neural tissue application.
- MeSH
- extracelulární matrix chemie MeSH
- hydrogely chemie MeSH
- iridoidy * MeSH
- karbodiimidy aplikace a dávkování MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie MeSH
- proliferace buněk fyziologie MeSH
- pupečník cytologie MeSH
- regenerace nervu fyziologie MeSH
- tkáňové inženýrství MeSH
- tkáňové podpůrné struktury chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This prospective study sought to evaluate the healing quality of implanted ultraporous β-tricalcium phosphate sown with expanded autologous mesenchymal stromal cells (MSCs) into femoral defects during revision hip arthroplasty. A total of 37 osseous defects in 37 patients were treated and evaluated concerning bone regeneration. Nineteen subjects received β-tricalcium phosphate graft material serving as a carrier of expanded autologous MSCs (the trial group A), nine subjects received β-tricalcium phosphate graft material only (the study group B) and nine subjects received cancellous allografts only (the control group C). Clinical and radiographic evaluations were scheduled at 6 weeks, 3, 6, and 12 months post-operatively, and performed at the most recent visit as well. All observed complications were recorded during follow-up to assess the use of an ultraporous β-tricalcium phosphate synthetic graft material combined with expanded MSCs in bone defect repair. The resulting data from participants with accomplished follow-up were processed and statistically evaluated with a Freeman-Halton modification of the Fischer's exact test, a P < 0.05 value was considered to be significant. Whereas no significant difference was observed between the trial group A with β-tricalcium phosphate synthetic graft material serving as a carrier of expanded autologous MSCs and control group C with cancellous impaction allografting in terms of the bone defect healing, significant differences were documented between the study group B with β-tricalcium phosphate graft material only and control group C. Regarding adverse effects, six serious events were recorded during the clinical trial with no causal relationship to the cell product. β-tricalcium phosphate synthetic graft material serving as a carrier of expanded autologous MSCs appears safe and promotes the healing of bone defects in a jeopardized and/or impaired microenvironment. This clinical trial was registered at the EU Clinical Trials Register before patient recruitment (Registration number: EudraCT number 2012-005599-33; Date of registration: 2013-02-04).
- MeSH
- dospělí MeSH
- femur cytologie zranění fyziologie chirurgie MeSH
- fosforečnany vápenaté chemie terapeutické užití MeSH
- kostní náhrady chemie terapeutické užití MeSH
- lidé středního věku MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie MeSH
- regenerace kostí * MeSH
- senioři MeSH
- tkáňové podpůrné struktury chemie MeSH
- transplantace mezenchymálních kmenových buněk metody MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze II MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Advanced therapy medicinal products (ATMPs) represent a new generation of biopharmaceuticals that comprise gene therapy medicinal products (GTMPs), somatic cell therapy products (CTMPs), tissue engineered products (TEPs), and combined advanced therapy medicinal products (cATMPs). The joint effort of the academia-industry-regulatory triangle translated scientific progress into ten authorized ATMPs in the European Community. This notion holds promise for the whole field of ATMP therapies that have been increasingly evaluated in a number of clinical studies, also in the Czech Republic (CR). Here, we prepared an overview of regulatory framework, past and present clinical studies, and already authorized ATMPs in the CR. Clinical studies on ATMPs in the CR were mapped using public databases, particularly ClinicalTrials.gov, the European Union Clinical Trials Register, and the State Institute for Drug Control database. We found 50 registered clinical studies using ATMPs in the CR that mostly involve CTMPs (n = 36), followed by GTMPs (n = 4) and TEPs (n = 4). The majority of the studies use autologous ATMPs (76%) and are aimed at the treatment of oncologic conditions (58%) and musculoskeletal disorders (24%). The most frequent autologous cell type was dendritic cells (42%), bone marrow mononuclear cells (16%) and bone marrow mesenchymal stromal cells (13%). Allogeneic ATMPs (12%) are mostly aimed at the treatment of venous ulcers (33%) and utilize keratinocytes and fibroblasts (33%). In summary, ATMPs are increasingly tested in clinical trials in the CR, which will most likely lead to their translation into broader clinical use. However, to stimulate market viability of registered ATMPs, implementation of the sophisticated reimbursement system will be required.
- MeSH
- biologické přípravky terapeutické užití MeSH
- buněčná a tkáňová terapie trendy MeSH
- Evropská unie MeSH
- genetická terapie trendy MeSH
- lidé MeSH
- tkáňové inženýrství trendy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Human mesenchymal stem cells derived from Wharton's jelly (WJ-MSCs) were used for the treatment of the ischemic-compression model of spinal cord injury in rats. To assess the effectivity of the treatment, different dosages (0.5 or 1.5 million cells) and repeated applications were compared. Cells or saline were applied intrathecally by lumbar puncture for one week only, or in three consecutive weeks after injury. Rats were assessed for locomotor skills (BBB, rotarod, flat beam) for 9 weeks. Spinal cord tissue was morphometrically analyzed for axonal sprouting, sparing of gray and white matter and astrogliosis. Endogenous gene expression (Gfap, Casp3, Irf5, Cd86, Mrc1, Cd163) was studied with quantitative Real-time polymerase chain reaction (qRT PCR). Significant recovery of functional outcome was observed in all of the treated groups except for the single application of the lowest number of cells. Histochemical analyses revealed a gradually increasing effect of grafted cells, resulting in a significant increase in the number of GAP43+ fibers, a higher amount of spared gray matter and reduced astrogliosis. mRNA expression of macrophage markers and apoptosis was downregulated after the repeated application of 1.5 million cells. We conclude that the effect of hWJ-MSCs on spinal cord regeneration is dose-dependent and potentiated by repeated application.
- MeSH
- apoptóza MeSH
- astrocyty MeSH
- axony metabolismus MeSH
- bílá hmota metabolismus patologie MeSH
- biologické markery MeSH
- buněčná diferenciace MeSH
- exprese genu MeSH
- krysa rodu rattus MeSH
- kultivované buňky MeSH
- lidé MeSH
- lokomoce MeSH
- mezenchymální kmenové buňky cytologie metabolismus MeSH
- modely nemocí na zvířatech MeSH
- poranění míchy diagnóza etiologie metabolismus terapie MeSH
- šedá hmota metabolismus patologie MeSH
- transplantace mezenchymálních kmenových buněk * MeSH
- viabilita buněk MeSH
- Whartonův rosol cytologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Temporal bone reconstruction is a persisting problem following middle ear cholesteatoma surgery. Seeking to advance the clinical transfer of stem cell therapy we attempted the reconstruction of temporal bone using a composite bioartificial graft based on a hydroxyapatite bone scaffold combined with human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). The aim of this study was to evaluate the effect of the combined biomaterial on the healing of postoperative temporal bone defects and the preservation of physiological hearing functions in a guinea pig model. The treatment's effect could be observed at 1 and 2 months after implantation of the biomaterial, as opposed to the control group. The clinical evaluation of our results included animal survival, clinical signs of an inflammatory response, and exploration of the tympanic bulla. Osteogenesis, angiogenesis, and inflammation were evaluated by histopathological analyses, whereas hBM-MSCs survival was evaluated by immunofluorescence assays. Hearing capacity was evaluated by objective audiometric methods, i.e. auditory brainstem responses and otoacoustic emission. Our study shows that hBM-MSCs, in combination with hydroxyapatite scaffolds, improves the repair of bone defects providing a safe and effective alternative in their treatment following middle ear surgery due to cholesteatoma.
- MeSH
- cholesteatom středního ucha * metabolismus patologie chirurgie MeSH
- heterografty MeSH
- lidé MeSH
- mastoidektomie škodlivé účinky MeSH
- modely nemocí na zvířatech MeSH
- morčata MeSH
- obnova funkce * MeSH
- osteogeneze * MeSH
- pooperační komplikace * metabolismus patologie terapie MeSH
- sluch * MeSH
- spánková kost * zranění metabolismus patologie MeSH
- transplantace mezenchymálních kmenových buněk * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- morčata MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Extracellular matrix (ECM) hydrogels prepared by tissue decellularization have been reported as natural injectable materials suitable for neural tissue repair. In this study, we prepared ECM hydrogel derived from human umbilical cord (UC) and evaluated its composition and mechanical and biological properties in comparison with the previously described ECM hydrogels derived from porcine urinary bladder (UB), brain, and spinal cord. The ECM hydrogels did not differ from each other in the concentration of collagen, while the highest content of glycosaminoglycans as well as the shortest gelation time was found for UC-ECM. The elastic modulus was then found to be the highest for UB-ECM. In spite of a different origin, topography, and composition, all ECM hydrogels similarly promoted the migration of human mesenchymal stem cells (MSCs) and differentiation of neural stem cells, as well as axonal outgrowth in vitro. However, only UC-ECM significantly improved proliferation of tissue-specific UC-derived MSCs when compared with the other ECMs. Injection of UC-ECM hydrogels into a photothrombotic cortical ischemic lesion in rats proved its in vivo gelation and infiltration with host macrophages. In summary, this study proposes UC-ECM hydrogel as an easily accessible biomaterial of human origin, which has the potential for neural as well as other soft tissue reconstruction.
- MeSH
- druhová specificita MeSH
- extracelulární matrix chemie MeSH
- hydrogely chemie MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie metabolismus MeSH
- nervová tkáň cytologie metabolismus MeSH
- pohyb buněk MeSH
- prasata MeSH
- proliferace buněk MeSH
- pupečník chemie MeSH
- tkáňové podpůrné struktury ekonomika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Despite the huge research into stem cells and their regenerative properties for bone healing, there are still unanswered questions including the recipient's respond to the presence of the stem cells, the fate of stem cells inside the bone defect and the possible advantage in utilizing pre-differentiated cells. To address these problems, we used human multipotent mesenchymal stromal/stem cells (MSCs), GMP Grade, in a rat model of bone formation. In a "bioreactor concept" approach seven Wistar rats were implanted with 0.2 g of synthetic bone scaffold seeded with 2 × 106 MSCs, seven Wistar rats were implanted with 0.2 g of synthetic bone scaffold seeded with 1 × 106 predifferentiated osteoblasts and 1 × 106 pre-differentiated endothelial cells and 14 Wistar rats were implanted with 0.2 g of synthetic bone scaffold without seeded cells into an intramuscular pocket on the left side of their back. The right side of each rat was used as a control, and 0.2 g of synthetic bone scaffold was implanted into the intramuscular pocket alone. To see the early stage healing the samples were harvested 14 days after the implantation, MSCs were detected by positive DAPI and MTCO2 staining in 43% of all the samples implanted with MSCs, and no inflammation signs were present in any implanted animal. New vessels could be found in both groups implanted with MSCs, but not in the control group of animals. However, hematoxylin-eosin staining could not detect newly created bone within the implant in any of the groups. These results were in line with COLL1 staining, where we could detect positive staining only in three cases, all of which were implanted with un-differentiated MSCs. According to our findings, there were no benefits of using the pre-differentiated of MSC.
- MeSH
- fyziologická neovaskularizace MeSH
- mezenchymální kmenové buňky fyziologie MeSH
- osteoblasty fyziologie MeSH
- osteogeneze fyziologie MeSH
- potkani Wistar MeSH
- regenerace kostí fyziologie MeSH
- transplantace mezenchymálních kmenových buněk metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH