- MeSH
- Betacoronavirus MeSH
- fylogeneze MeSH
- genom * MeSH
- koronavirové infekce * MeSH
- lidé MeSH
- pandemie * MeSH
- virová pneumonie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- komentáře MeSH
Perilipins are lipid droplet surface proteins that contribute to fat metabolism by controlling the access of lipids to lipolytic enzymes. Perilipins have been identified in organisms as diverse as metazoa, fungi, and amoebas but strikingly not in nematodes. Here we identify the protein encoded by the W01A8.1 gene in Caenorhabditis elegans as the closest homologue and likely orthologue of metazoan perilipin. We demonstrate that nematode W01A8.1 is a cytoplasmic protein residing on lipid droplets similarly as human perilipins 1 and 2. Downregulation or elimination of W01A8.1 affects the appearance of lipid droplets resulting in the formation of large lipid droplets localized around the dividing nucleus during the early zygotic divisions. Visualization of lipid containing structures by CARS microscopy in vivo showed that lipid-containing structures become gradually enlarged during oogenesis and relocate during the first zygotic division around the dividing nucleus. In mutant embryos, the lipid containing structures show defective intracellular distribution in subsequent embryonic divisions and become gradually smaller during further development. In contrast to embryos, lipid-containing structures in enterocytes and in epidermal cells of adult animals are smaller in mutants than in wild type animals. Our results demonstrate the existence of a perilipin-related regulation of fat metabolism in nematodes and provide new possibilities for functional studies of lipid metabolism.
- Publikační typ
- časopisecké články MeSH
The development of complex multicellular organisms is dependent on regulatory decisions that are necessary for the establishment of specific differentiation and metabolic cellular states. Nuclear receptors (NRs) form a large family of transcription factors that play critical roles in the regulation of development and metabolism of Metazoa. Based on their DNA binding and ligand binding domains, NRs are divided into eight NR subfamilies from which representatives of six subfamilies are present in both deuterostomes and protostomes indicating their early evolutionary origin. In some nematode species, especially in Caenorhabditis, the family of NRs expanded to a large number of genes strikingly exceeding the number of NR genes in vertebrates or insects. Nematode NRs, including the multiplied Caenorhabditis genes, show clear relation to vertebrate and insect homologues belonging to six of the eight main NR subfamilies. This review summarizes advances in research of nematode NRs and their developmental functions. Nematode NRs can reveal evolutionarily conserved mechanisms that regulate specific developmental and metabolic processes as well as new regulatory adaptations. They represent the results of a large number of natural experiments with structural and functional potential of NRs for the evolution of the phylum. The conserved and divergent character of nematode NRs adds a new dimension to our understanding of the general biology of regulation by NRs. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
- MeSH
- Caenorhabditis elegans embryologie genetika MeSH
- hlístice embryologie genetika růst a vývoj MeSH
- konzervovaná sekvence MeSH
- molekulární evoluce * MeSH
- receptory cytoplazmatické a nukleární klasifikace fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
UNLABELLED: SKIP and BIR are evolutionarily conserved proteins; SKIP (SKP-1) is a known transcription and splicing cofactor while BIR-1/Survivin regulates cell division, gene expression and development. Their loss of function induces overlapping developmental phenotypes. We searched for SKP-1 and BIR-1 interaction on protein level using yeast two-hybrid screens and identified partially overlapping categories of proteins as SKIP-1 and BIR-1 interactors. The interacting proteins included ribosomal proteins, transcription factors, translation factors and cytoskeletal and motor proteins suggesting involvement in multiple protein complexes. To visualize the effect of BIR-1 on the proteome in Caenorhabditis elegans we induced a short time pulse BIR-1 overexpression in synchronized L1 larvae. This led to a dramatic alteration of the whole proteome pattern indicating that BIR-1 alone has the capacity to alter the chromatographic profile of many target proteins including proteins found to be interactors in yeast two hybrid screens. The results were validated for ribosomal proteins RPS3 and RPL5, non-muscle myosin and TAC-1, a transcription cofactor and a centrosome associated protein. Together, these results suggest that SKP-1 and BIR-1 are multifunctional proteins that form multiple protein complexes in both shared and distinct pathways and have the potential to connect proteome signals with the regulation of gene expression. BIOLOGICAL SIGNIFICANCE: The genomic organization of the genes encoding BIR-1 and SKIP (SKP-1) in C. elegans have suggested that these two factors, each evolutionarily conserved, have related functions. However, these functional connections have remained elusive and underappreciated in light of limited information from C. elegans and other biological systems. Our results provide further evidence for a functional link between these two factors and suggest they may transmit proteome signals towards the regulation of gene expression.
- MeSH
- Caenorhabditis elegans metabolismus MeSH
- jaderné proteiny metabolismus MeSH
- přežívající MeSH
- proteiny Caenorhabditis elegans metabolismus MeSH
- proteom metabolismus MeSH
- regulace genové exprese fyziologie MeSH
- signální transdukce fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
We present a case study of an elderly woman with systemic lambda-type AL amyloidosis that featured unusually extensive cutaneous involvement. The case initially presented with a sudden hyper β-carotenemia with carotenoderma that instigated the clinical examination including skin biopsy. A diagnosis of systemic amyloidosis was made. Immunohistochemistry and Western-blot analysis indicated the presence of lambda light chain proteins in skin amyloid deposits. However, notable co-deposition of wild-type apoA-I and transthyretin was observed which caused initial diagnostic confusion. Proteomic analysis of microdissected skin amyloid deposits by mass spectrometry confirmed lambda light chain proteins in amyloid deposits and co-deposition of apolipoprotein A-IV and serum amyloid P-component. The patient died from renal failure caused by amyloid nephropathy combined with analgesic nephropathy. The autopsy disclosed vascular, cardiac, renal and pulmonary amyloid deposition. While all amyloid deposits were positive for lambda light chain proteins, the immunodetection of apoA-I and transthyretin varied significantly among the visceral amyloid deposits. Although the patient exhibited a 1000-fold increase in serum β-carotene levels, only a mild increase in retinol and lutein concentrations was observed. Increased β-carotene values were also found in the liver and the skin. The mechanisms underlying this hyper β-carotenemia remain undetermined.
- MeSH
- amyloid metabolismus MeSH
- amyloidóza krev diagnóza MeSH
- beta-karoten krev MeSH
- fatální výsledek MeSH
- hyperpigmentace krev diagnóza MeSH
- lidé MeSH
- pigmentace kůže MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
NCoR and SMRT are two paralogous vertebrate proteins that function as corepressors with unliganded nuclear receptors. Although C. elegans has a large number of nuclear receptors, orthologues of the corepressors NCoR and SMRT have not unambiguously been identified in Drosophila or C. elegans. Here, we identify GEI-8 as the closest homologue of NCoR and SMRT in C. elegans and demonstrate that GEI-8 is expressed as at least two isoforms throughout development in multiple tissues, including neurons, muscle and intestinal cells. We demonstrate that a homozygous deletion within the gei-8 coding region, which is predicted to encode a truncated protein lacking the predicted NR domain, results in severe mutant phenotypes with developmental defects, slow movement and growth, arrested gonadogenesis and defects in cholinergic neurotransmission. Whole genome expression analysis by microarrays identified sets of de-regulated genes consistent with both the observed mutant phenotypes and a role of GEI-8 in regulating transcription. Interestingly, the upregulated transcripts included a predicted mitochondrial sulfide:quinine reductase encoded by Y9C9A.16. This locus also contains non-coding, 21-U RNAs of the piRNA class. Inhibition of the expression of the region coding for 21-U RNAs leads to irregular gonadogenesis in the homozygous gei-8 mutants, but not in an otherwise wild-type background, suggesting that GEI-8 may function in concert with the 21-U RNAs to regulate gonadogenesis. Our results confirm that GEI-8 is the orthologue of the vertebrate NCoR/SMRT corepressors and demonstrate important roles for this putative transcriptional corepressor in development and neuronal function.
- MeSH
- Caenorhabditis elegans genetika fyziologie MeSH
- delece genu MeSH
- gonády růst a vývoj MeSH
- korepresor 1 jaderného receptoru genetika MeSH
- korepresor 2 jaderného receptoru genetika MeSH
- korepresorové proteiny genetika metabolismus MeSH
- mikročipová analýza MeSH
- molekulární sekvence - údaje MeSH
- neurony fyziologie MeSH
- proteiny Caenorhabditis elegans genetika metabolismus MeSH
- receptory cytoplazmatické a nukleární metabolismus MeSH
- regulace genové exprese genetika MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční seřazení MeSH
- stanovení celkové genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
NHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in Caenorhabditis elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparative expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical co-regulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa.
- MeSH
- Caenorhabditis elegans genetika růst a vývoj MeSH
- delece genu MeSH
- molekulární sekvence - údaje MeSH
- proteiny Caenorhabditis elegans genetika fyziologie MeSH
- proteiny hedgehog metabolismus MeSH
- receptory cytoplazmatické a nukleární genetika fyziologie MeSH
- sekvence aminokyselin MeSH
- shazování tělního pokryvu genetika MeSH
- transkripční faktory genetika fyziologie MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
Nuclear receptors (NRs), or nuclear hormone receptors (NHRs), are transcription factors that regulate development and metabolism of most if not all animal species. Their regulatory networks include conserved mechanisms that are shared in-between species as well as mechanisms that are restricted to certain phyla or even species. In search for conserved members of the NHR family in Schmidtea mediterranea, we identified a molecular signature of a class of NRs, NR2E1, in the S. mediterranea genome and cloned its complete cDNA coding sequence. The derived amino acid sequence shows a high degree of conservation of both DNA-binding domain and ligand- binding domain and a remarkably high homology to vertebrate NR2E1 and C. elegans NHR-67. Quantitative PCR detected approximately ten-fold higher expression of Smed-tlx-1 in the proximal part of the head compared to the tail region. The expression of Smed-tlx-1 is higher during fed state than during fasting. Smed-tlx-1 down-regulation by RNA interference affects the ability of the animals to maintain body plan and induces defects of brain, eyes and body shape during fasting and re-growing cycles. These results suggest that SMED-TLX-1 is critical for tissue and body plan maintenance in planaria.
- MeSH
- fylogeneze MeSH
- klonování DNA MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- omezení příjmu potravy fyziologie MeSH
- orgánová specificita genetika MeSH
- proteiny červů genetika chemie metabolismus MeSH
- receptory cytoplazmatické a nukleární genetika chemie metabolismus MeSH
- regulace genové exprese MeSH
- RNA interference MeSH
- rozvržení tělního plánu genetika MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- stravovací zvyklosti fyziologie MeSH
- Turbellaria embryologie fyziologie genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
The genome of Caenorhabditis elegans encodes more than 280 nuclear hormone receptors (NHRs) in contrast to the 48 NHRs in humans and 18 NHRs in Drosophila. The majority of the C. elegans NHRs are categorized as supplementary nuclear receptors (supnrs) that evolved by successive duplications of a single ancestral gene. The evolutionary pressures that lead to the expansion of NHRs in nematodes, as well as the function of the majority of supnrs, are not known. Here, we have studied the expression of seven genes organized in a cluster on chromosome V: nhr-206, nhr-208, nhr-207, nhr-209, nhr-154, nhr-153 and nhr-136. Reverse transcription-quantitative PCR and analyses using transgenic lines carrying GFP fusion genes with their putative promoters revealed that all seven genes of this cluster are expressed and five have partially overlapping expression patterns including in the pharynx, intestine, certain neurons, the anal sphincter muscle, and male specific cells. Four genes in this cluster are conserved between C. elegans and Caenorhabditis briggsae whereas three genes are present only in C. elegans, the apparent result of a relatively recent expansion. Interestingly, we find that a subset of the conserved and non-conserved genes in this cluster respond transcriptionally to fasting in tissue-specific patterns. Our results reveal the diversification of the temporal, spatial, and metabolic gene expression patterns coupled with evolutionary drift within supnr family members.
- MeSH
- Caenorhabditis elegans genetika metabolismus fyziologie MeSH
- chromozomy MeSH
- duplicitní geny MeSH
- genetická transkripce fyziologie MeSH
- genetická variace fyziologie MeSH
- genom u helmintů MeSH
- hmyz genetika metabolismus MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- multigenová rodina genetika MeSH
- omezení příjmu potravy metabolismus fyziologie MeSH
- receptory cytoplazmatické a nukleární genetika metabolismus MeSH
- savci genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Caenorhabditis elegans has an unexpectedly large number (284) of genes encoding nuclear hormone receptors, most of which are nematode-specific and are of unknown function. We have exploited comparative two-dimensional chromatography of synchronized cultures of wild type C. elegans larvae and a mutant in nhr-40 to determine if proteomic approaches will provide additional insight into gene function. Chromatofocusing, followed by reversed-phase chromatography and mass spectrometry, identified altered chromatographic patterns for a set of proteins, many of which function in muscle and metabolism. Prompted by the proteomic analysis, we find that the penetrance of the developmental phenotypes in the mutant is enhanced at low temperatures and by food restriction. The combination of our phenotypic and proteomic analysis strongly suggests that NHR-40 provides a link between metabolism and muscle development. Our results highlight the utility of comparative two-dimensional chromatography to provide a relatively rapid method to gain insight into gene function.
- MeSH
- Caenorhabditis elegans chemie metabolismus MeSH
- chromatografie kapalinová metody MeSH
- financování organizované MeSH
- proteiny Caenorhabditis elegans analýza metabolismus MeSH
- proteom analýza metabolismus MeSH
- proteomika metody MeSH
- receptory cytoplazmatické a nukleární fyziologie genetika MeSH
- vývoj svalů genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH