Wilson disease (WD) primarily presents with hepatic and neurological symptoms. While hepatic symptoms typically precede the neurological manifestations, copper accumulates in the brain already in this patient group and leads to subclinical brain MRI abnormalities including T2 hyperintensities and atrophy. This study aimed to assess brain morphological changes in mild hepatic WD. WD patients without a history of neurologic symptoms and decompensated cirrhosis and control participants underwent brain MRI at 3T scanner including high-resolution T1-weighted images. A volumetric evaluation was conducted on the following brain regions: nucleus accumbens, caudate, pallidum, putamen, thalamus, amygdala, hippocampus, midbrain, pons, cerebellar gray matter, white matter (WM), and superior peduncle, using Freesurfer v7 software. Whole-brain analyses using voxel- and surface-based morphometry were performed using SPM12. Statistical comparisons utilized a general linear model adjusted for total intracranial volume, age, and sex. Twenty-six WD patients with mild hepatic form (30 ± 9 years [mean age ± SD]); 11 women; mean treatment duration 13 ± 12 (range 0-42) years and 28 healthy controls (33 ± 9 years; 15 women) were evaluated. Volumetric analysis revealed a significantly smaller pons volume and a trend for smaller midbrain and cerebellar WM in WD patients compared to controls. Whole-brain analysis revealed regions of reduced volume in the pons, cerebellar, and lobar WM in the WD group. No significant differences in gray matter density or cortical thickness were found. Myelin or WM in general seems vulnerable to low-level copper toxicity, with WM volume loss showing promise as a marker for assessing brain involvement in early WD stages.
- MeSH
- bílá hmota patologie diagnostické zobrazování MeSH
- dospělí MeSH
- hepatolentikulární degenerace * patologie diagnostické zobrazování MeSH
- játra patologie diagnostické zobrazování MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mladý dospělý MeSH
- mozek * patologie diagnostické zobrazování MeSH
- šedá hmota patologie diagnostické zobrazování MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION: Wilson's disease (WD) is a potentially treatable, inherited disorder resulting from impaired copper metabolism. Pathological copper accumulation causes a range of symptoms, most commonly hepatic and a wide spectrum of neurological symptoms including tremor, dystonia, chorea, parkinsonism, dysphagia, dysarthria, gait and posture disturbances. To reduce copper overload, anti-copper drugs are used that improve liver function and neurological symptoms in up to 85% of patients. However, in some WD patients, treatment introduction leads to neurological deterioration, and in others, neurological symptoms persist with no improvement or improvement only after several years of treatment, severely affecting the patient's quality of life. AREAS COVERED: This review appraises the evidence on various pharmacological and non-pharmacological therapies, neurosurgical procedures and liver transplantation for the management of neurological WD symptoms. The authors also discuss the neurological symptoms of WD, causes of deterioration and present symptomatic treatment options. EXPERT OPINION: Based on case and series reports, current recommendations and expert opinion, WD treatment is focused mainly on drugs leading to negative copper body metabolism (chelators or zinc salts) and copper-restricted diet. Treatment of WD neurological symptoms should follow general recommendations of symptomatic treatment. Patients should be always considered individually, especially in the case of severe, disabling neurological symptoms.
BACKGROUND: MRI is a sensitive method for the assessment of brain abnormalities in Wilson disease, that is, T2 hyperintensities, T2 hypointensities, and atrophy, but a validated scoring system for the classification of radiological severity is lacking. The objective of this study was to develop and validate a brain MRI visual rating scale for Wilson disease. METHODS: The proposed Wilson disease brain MRI severity scale consists of acute toxicity and chronic damage subscores from predefined structures. The former, calculated by summing scores of T2 hyperintensities (excluding cavitation), is likely to be partially reversible with treatment. The latter, representing the sum of scores of T2 hypointensities and brain atrophy, reflects pathology that is not readily reversible. Validation was performed on MRI scans acquired using 1.5T system from 39 Wilson disease patients examined at baseline and after 24 months on anticopper treatment. Intraclass correlation coefficients of 5 ratings from 3 raters were calculated. Temporal evolution of the MRI severity score and its association with clinical severity, assessed using the Unified Wilson Disease Rating Scale part III, was calculated. RESULTS: Intrarater and interrater agreement were good (r > 0.93; P < 0.001; and r > 0.74; P < 0.001, respectively). In neurologic Wilson disease patients, the total MRI severity score improved over 2 years (P = 0.032), mainly because of reduced acute toxicity (P = 0.0015), whereas the chronic damage score deteriorated (P = 0.035). Unified Wilson Disease Rating Scale part III score was positively associated with chronic damage and total score at baseline (P = 0.005 and P = 0.003, respectively) and in month 24 (P < 0.001 and P = 0.001, respectively). CONCLUSIONS: The Wilson disease brain MRI severity scale is a simple, reliable, and valid instrument that allows semiquantitative assessment of radiological Wilson disease severity. © 2020 International Parkinson and Movement Disorder Society.
Neurologic symptoms in Wilson disease (WD) appear at an older age compared to hepatic symptoms and manifest in patients with misdiagnosed liver disease, in patients when the hepatic stage is clinically silent, in the case of non-compliance with anti-copper treatment, or with treatment failure. Neurologic symptoms in WD are caused by nervous tissue damage that is primarily a consequence of extrahepatic copper toxicity. Copper levels in brain tissues as well as cerebrospinal fluid (CSF) are diffusely increased by a factor of 10 and its toxicity involves various mechanisms such as mitochondrial toxicity, oxidative stress, cell membrane damage, crosslinking of DNA, and inhibition of enzymes. Excess copper is initially taken-up and buffered by astrocytes and oligodendrocytes but ultimately causes dysfunction of blood-brain-barrier and demyelination. Most severe neuropathologic abnormalities, including tissue rarefaction, reactive astrogliosis, myelin palor, and presence of iron-laden macrophages, are typically present in the putamen while other basal ganglia, thalami, and brainstem are usually less affected. The most common neurologic symptoms of WD are movement disorders including tremor, dystonia, parkinsonism, ataxia and chorea which are associated with dysphagia, dysarthria and drooling. Patients usually manifest with various combinations of these symptoms while purely monosymptomatic presentation is rare. Neurologic symptoms are largely reversible with anti-copper treatment, but a significant number of patients are left with residual impairment. The approach for symptomatic treatment in WD is based on guidelines for management of common movement disorders. The vast majority of WD patients with neurologic symptoms have abnormalities on brain magnetic resonance imaging (MRI). Pathologic MRI changes include T2 hyperintensities in the basal ganglia, thalami and white matter, T2 hypointensities in the basal ganglia, and atrophy. Most importantly, brain damage and neurologic symptoms can be prevented with an early initiation of anti-copper treatment. Introducing population WD screening, e.g., by exome sequencing genetic methods, would allow early treatment and decrease the neurologic burden of WD.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Wilson disease (WD) is a potentially treatable, inherited disorder of copper metabolism that is characterized by the pathological accumulation of copper. WD is caused by mutations in ATP7B, which encodes a transmembrane copper-transporting ATPase, leading to impaired copper homeostasis and copper overload in the liver, brain and other organs. The clinical course of WD can vary in the type and severity of symptoms, but progressive liver disease is a common feature. Patients can also present with neurological disorders and psychiatric symptoms. WD is diagnosed using diagnostic algorithms that incorporate clinical symptoms and signs, measures of copper metabolism and DNA analysis of ATP7B. Available treatments include chelation therapy and zinc salts, which reverse copper overload by different mechanisms. Additionally, liver transplantation is indicated in selected cases. New agents, such as tetrathiomolybdate salts, are currently being investigated in clinical trials, and genetic therapies are being tested in animal models. With early diagnosis and treatment, the prognosis is good; however, an important issue is diagnosing patients before the onset of serious symptoms. Advances in screening for WD may therefore bring earlier diagnosis and improvements for patients with WD.
- MeSH
- chelátory terapeutické užití MeSH
- hepatolentikulární degenerace diagnóza genetika patofyziologie MeSH
- kvalita života psychologie MeSH
- lidé MeSH
- měď škodlivé účinky metabolismus MeSH
- molybden terapeutické užití MeSH
- potravní doplňky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
Wilson's disease (WD) is an inherited metabolic disorder related to disturbances of copper metabolism, and predominantly presents with liver and neuropsychiatric symptoms. In most cases it can be successfully treated with anti-copper agents, and both liver function and neuropsychiatric symptoms typically improve. Treatment guidelines for WD include recommendations for anti-copper treatment as well as for the treatment of liver failure symptoms. Recently, recommendations for treatment of the neurological symptoms of WD have also been proposed. Although most WD patients present with psychiatric symptoms at some stage of the disease, currently there are no guidelines for the treatment of the psychiatric manifestations. Treatment of the psychiatric symptoms of WD is often guided by general psychiatric experience, which typically glosses over the specificity of WD, and can result in severe neurological and/or hepatic complications. Here we review and discuss the possible treatments available for the mood disturbances, psychosis, behavioral and cognitive disorders that can occur in WD, as well as their efficacy.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Wilson disease (WD) is a potentially treatable neurodegenerative disorder. In the majority of cases, treatment with drugs that induce a negative copper balance (usually chelators or zinc salts) leads to improvements in liver function and neurologic signs. However, some patients show severe neurologic symptoms at diagnosis, such as tremor, dystonia, parkinsonism, and chorea. In this patient group, some neurologic deficits may persist despite adequate treatment, and further neurologic deterioration may be observed after treatment initiation. Such patients may require additional treatment to alleviate neurologic symptoms. Apart from general recommendations for WD anticopper treatment, there are currently no guidelines for managing neurologic symptoms in WD. The aim of this chapter is to summarize possible treatments of neurologic symptoms in WD based on the presently available medical literature.
Trace elements, such as iron, copper, manganese, and calcium, which are essential constituents necessary for cellular homeostasis, become toxic when present in excess quantities. In this article, we describe disorders arising from endogenous dysregulation of metal homeostasis leading to their tissue accumulation. Although subgroups of these diseases lead to regional brain metal accumulation, mostly in globus pallidus, which is susceptible to accumulate divalent metal ions, other subgroups cause systemic metal accumulation affecting the whole brain, liver, and other parenchymal organs. The latter group comprises Wilson disease, manganese transporter deficiency, and aceruloplasminemia and responds favorably to chelation treatment.
- MeSH
- chelátová terapie MeSH
- duševní poruchy etiologie MeSH
- hepatolentikulární degenerace epidemiologie etiologie patofyziologie terapie MeSH
- kovy metabolismus toxicita MeSH
- lidé MeSH
- mozek metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- přehledy MeSH
Impaired cellular homeostasis of metals, particularly of Cu, Fe and Mn may trigger neurodegeneration through various mechanisms, notably induction of oxidative stress, promotion of α-synuclein aggregation and fibril formation, activation of microglial cells leading to inflammation and impaired production of metalloproteins. In this article we review available studies concerning Fe, Cu and Mn in Parkinson's disease and Wilson's disease. In Parkinson's disease local dysregulation of iron metabolism in the substantia nigra (SN) seems to be related to neurodegeneration with an increase in SN iron concentration, accompanied by decreased SN Cu and ceruloplasmin concentrations and increased free Cu concentrations and decreased ferroxidase activity in the cerebrospinal fluid. Available data in Wilson's disease suggest that substantial increases in CNS Cu concentrations persist for a long time during chelating treatment and that local accumulation of Fe in certain brain nuclei may occur during the course of the disease. Consequences for chelating treatment strategies are discussed.
- MeSH
- hepatolentikulární degenerace metabolismus patofyziologie MeSH
- homeostáza MeSH
- lidé MeSH
- mangan metabolismus toxicita MeSH
- měď metabolismus toxicita MeSH
- modely nemocí na zvířatech MeSH
- mozek metabolismus patofyziologie MeSH
- Parkinsonova nemoc metabolismus patofyziologie MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- železo metabolismus toxicita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH