NPC1 encodes a lysosomal protein involved in cholesterol transport. Biallelic mutations in this gene may lead to Niemann-Pick disease type C (NPC), a lysosomal storage disorder. The role of NPC1 in alpha synucleinopathies is still unclear, as different genetic, clinical, and pathological studies have reported contradictory results. This study aimed to evaluate the association of NPC1 variants with the synucleinopathies Parkinson's disease (PD), dementia with Lewy bodies (DLB), and rapid eye movement-sleep behavior disorder (RBD). We analyzed common and rare variants from 3 cohorts of European descent: 1084 RBD cases and 2945 controls, 2852 PD cases and 1686 controls, and 2610 DLB cases and 1920 controls. Logistic regression models were used to assess common variants while optimal sequence Kernel association tests were used to assess rare variants, both adjusted for sex, age, and principal components. No variants were associated with any of the synucleinopathies, supporting that common and rare NPC1 variants do not play an important role in alpha synucleinopathies.
Rapid-eye movement (REM) sleep behavior disorder (RBD), enactment of dreams during REM sleep, is an early clinical symptom of alpha-synucleinopathies and defines a more severe subtype. The genetic background of RBD and its underlying mechanisms are not well understood. Here, we perform a genome-wide association study of RBD, identifying five RBD risk loci near SNCA, GBA, TMEM175, INPP5F, and SCARB2. Expression analyses highlight SNCA-AS1 and potentially SCARB2 differential expression in different brain regions in RBD, with SNCA-AS1 further supported by colocalization analyses. Polygenic risk score, pathway analysis, and genetic correlations provide further insights into RBD genetics, highlighting RBD as a unique alpha-synucleinopathy subpopulation that will allow future early intervention.
BACKGROUND: PSAP encodes saposin C, the co-activator of glucocerebrosidase, encoded by GBA. GBA mutations are associated with idiopathic/isolated REM sleep behavior disorder (iRBD), a prodromal stage of synucleinopathy. OBJECTIVE: To examine the role of PSAP mutations in iRBD. METHODS: We fully sequenced PSAP and performed Optimized Sequence Kernel Association Test in 1,113 iRBD patients and 2,324 controls. We identified loss-of-function (LoF) mutations, which are very rare in PSAP, in three iRBD patients and none in controls (uncorrected p = 0.018). RESULTS: Two variants were stop mutations, p.Gln260Ter and p.Glu166Ter, and one was an in-frame deletion, p.332_333del. All three mutations have a deleterious effect on saposin C, based on in silico analysis. In addition, the two carriers of p.Glu166Ter and p.332_333del mutations also carried a GBA variant, p.Arg349Ter and p.Glu326Lys, respectively. The co-occurrence of these extremely rare PSAP LoF mutations in two (0.2%) GBA variant carriers in the iRBD cohort, is unlikely to occur by chance (estimated co-occurrence in the general population based on gnomAD data is 0.00035%). Although none of the three iRBD patients with PSAP LoF mutations have phenoconverted to an overt synucleinopathy at their last follow-up, all manifested initial signs suggestive of motor dysfunction, two were diagnosed with mild cognitive impairment and all showed prodromal clinical markers other than RBD. Their probability of prodromal PD, according to the Movement Disorder Society research criteria, was 98% or more. CONCLUSION: These results suggest a possible role of PSAP variants in iRBD and potential genetic interaction with GBA, which requires additional studies.
BACKGROUND: There is only partial overlap in the genetic background of isolated rapid-eye-movement sleep behavior disorder (iRBD) and Parkinson's disease (PD). OBJECTIVE: To examine the role of autosomal dominant and recessive PD or atypical parkinsonism genes in the risk of iRBD. METHODS: Ten genes, comprising the recessive genes PRKN, DJ-1 (PARK7), PINK1, VPS13C, ATP13A2, FBXO7, and PLA2G6 and the dominant genes LRRK2, GCH1, and VPS35, were fully sequenced in 1039 iRBD patients and 1852 controls of European ancestry, followed by association tests. RESULTS: We found no association between rare heterozygous variants in the tested genes and risk of iRBD. Several homozygous and compound heterozygous carriers were identified, yet there was no overrepresentation in iRBD patients versus controls. CONCLUSION: Our results do not support a major role for variants in these genes in the risk of iRBD. © 2020 International Parkinson and Movement Disorder Society.
- MeSH
- heterozygot MeSH
- lidé MeSH
- Parkinsonova nemoc * genetika MeSH
- parkinsonské poruchy * genetika MeSH
- porucha chování v REM spánku * genetika MeSH
- spánek MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: To examine the role of genes identified through genome-wide association studies (GWASs) of Parkinson disease (PD) in the risk of isolated REM sleep behavior disorder (iRBD). METHODS: We fully sequenced 25 genes previously identified in GWASs of PD in a total of 1,039 patients with iRBD and 1,852 controls. The role of rare heterozygous variants in these genes was examined with burden tests. The contribution of biallelic variants was further tested. To examine the potential effect of rare nonsynonymous BST1 variants on the protein structure, we performed in silico structural analysis. Finally, we examined the association of common variants using logistic regression adjusted for age and sex. RESULTS: We found an association between rare heterozygous nonsynonymous variants in BST1 and iRBD (p = 0.0003 at coverage >50× and 0.0004 at >30×), driven mainly by 3 nonsynonymous variants (p.V85M, p.I101V, and p.V272M) found in 22 (1.2%) controls vs 2 (0.2%) patients. All 3 variants seem to be loss-of-function variants with a potential effect on the protein structure and stability. Rare noncoding heterozygous variants in LAMP3 were also associated with iRBD (p = 0.0006 at >30×). We found no association between rare heterozygous variants in the rest of genes and iRBD. Several carriers of biallelic variants were identified, yet there was no overrepresentation in iRBD. CONCLUSION: Our results suggest that rare coding variants in BST1 and rare noncoding variants in LAMP3 are associated with iRBD. Additional studies are required to replicate these results and to examine whether loss of function of BST1 could be a therapeutic target.
- MeSH
- ADP-ribosylcyklasa genetika MeSH
- CD antigeny genetika MeSH
- celogenomová asociační studie MeSH
- databáze genetické MeSH
- genetická variace MeSH
- GPI-vázané proteiny genetika MeSH
- heterozygot MeSH
- lidé středního věku MeSH
- lidé MeSH
- membránové glykoproteiny asociované s lyzozomy genetika MeSH
- nádorové proteiny genetika MeSH
- počítačová simulace MeSH
- polysomnografie MeSH
- porucha chování v REM spánku epidemiologie genetika MeSH
- sekundární struktura proteinů MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: To study the role of GBA variants in the risk for isolated REM sleep behavior disorder (iRBD) and conversion to overt neurodegeneration. METHODS: A total of 4,147 individuals were included: 1,061 patients with iRBD and 3,086 controls. GBA was fully sequenced using molecular inversion probes and Sanger sequencing. We analyzed the effects of GBA variants on the risk of iRBD, age at onset (AAO), and conversion rates. RESULTS: GBA variants were found in 9.5% of patients with iRBD compared to 4.1% of controls (odds ratio, 2.45; 95% confidence interval [CI], 1.87-3.22; p = 1 × 10-10). The estimated OR for mild p.N370S variant carriers was 3.69 (95% CI, 1.90-7.14; p = 3.5 × 10-5), while for severe variant carriers it was 17.55 (95% CI, 2.11-145.9; p = 0.0015). Carriers of severe GBA variants had an average AAO of 52.8 years, 7-8 years earlier than those with mild variants or noncarriers (p = 0.029). Of the GBA variant carriers with available data, 52.5% had converted, compared to 35.6% of noncarriers (p = 0.011), with a trend for faster conversion among severe GBA variant carriers. However, the results on AAO and conversion were based on small numbers and should be interpreted with caution. CONCLUSIONS: GBA variants robustly and differentially increase the risk of iRBD. The rate of conversion to neurodegeneration is also increased and may be faster among severe GBA variant carriers, although confirmation will be required in larger samples. Screening for RBD in healthy carriers of GBA variants should be studied as a potential way to identify GBA variant carriers who will develop a synucleinopathy in the future.
- MeSH
- genetická predispozice k nemoci genetika MeSH
- genetická variace MeSH
- glukosylceramidasa genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- neurodegenerativní nemoci genetika MeSH
- porucha chování v REM spánku genetika MeSH
- progrese nemoci MeSH
- senioři MeSH
- věk při počátku nemoci MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
Mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene were reported to be associated with Parkinson's disease and dementia with Lewy bodies. In the current study, we aimed to evaluate the role of SMPD1 variants in isolated rapid eye movement sleep behavior disorder (iRBD). SMPD1 and its untranslated regions were sequenced using targeted next-generation sequencing in 959 iRBD patients and 1287 controls from European descent. Our study reports no statistically significant association of SMPD1 variants and iRBD. It is hence unlikely that SMPD1 plays a major role in iRBD.
- MeSH
- genetická variace * MeSH
- genetické asociační studie * MeSH
- lidé MeSH
- negativní výsledek * MeSH
- poruchy spánku a bdění genetika patofyziologie MeSH
- sfingomyelinfosfodiesterasa genetika fyziologie MeSH
- spánek REM genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: Rapid eye movement sleep behavior disorder (RBD) is a prodromal synucleinopathy, as >80% will eventually convert to overt synucleinopathy. We performed an in-depth analysis of the SNCA locus to identify RBD-specific risk variants. METHODS: Full sequencing and genotyping of SNCA was performed in isolated/idiopathic RBD (iRBD, n = 1,076), Parkinson disease (PD, n = 1,013), dementia with Lewy bodies (DLB, n = 415), and control subjects (n = 6,155). The iRBD cases were diagnosed with RBD prior to neurodegeneration, although some have since converted. A replication cohort from 23andMe of PD patients with probable RBD (pRBD) was also analyzed (n = 1,782 cases; n = 131,250 controls). Adjusted logistic regression models and meta-analyses were performed. Effects on conversion rate were analyzed in 432 RBD patients with available data using Kaplan-Meier survival analysis. RESULTS: A 5'-region SNCA variant (rs10005233) was associated with iRBD (odds ratio [OR] = 1.43, p = 1.1E-08), which was replicated in pRBD. This variant is in linkage disequilibrium (LD) with other 5' risk variants across the different synucleinopathies. An independent iRBD-specific suggestive association (rs11732740) was detected at the 3' of SNCA (OR = 1.32, p = 4.7E-04, not statistically significant after Bonferroni correction). Homozygous carriers of both iRBD-specific SNPs were at highly increased risk for iRBD (OR = 5.74, p = 2E-06). The known top PD-associated variant (3' variant rs356182) had an opposite direction of effect in iRBD compared to PD. INTERPRETATION: There is a distinct pattern of association at the SNCA locus in RBD as compared to PD, with an opposite direction of effect at the 3' of SNCA. Several 5' SNCA variants are associated with iRBD and with pRBD in overt synucleinopathies. ANN NEUROL 2020;87:584-598.
- MeSH
- alfa-synuklein genetika MeSH
- demence s Lewyho tělísky genetika MeSH
- dospělí MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- logistické modely MeSH
- odds ratio MeSH
- Parkinsonova nemoc genetika MeSH
- porucha chování v REM spánku genetika MeSH
- prodromální symptomy * MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- synukleinopatie genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH