BACKGROUND: Adrenaline (ADR) is a cornerstone of advanced life support (ALS) in cardiac arrest (CA), although its neurologically favourable survival outcomes remain unclear. ADR increases coronary perfusion pressure (CPP), with levels >15 mmHg associated with successful defibrillation. This study aimed to elucidate the relationship between ADR, myocardial microvascular blood flow, and resuscitation outcomes using a porcine CA model simulating refractory ventricular fibrillation (VF). METHODS: This study involved 24 domestic pigs. After instrumentation, intubation, and baseline measurements, the animals were randomised into the ADR or control (saline) groups. VF was induced, and cardiopulmonary resuscitation was initiated using continuous mechanical chest compressions and ventilation. ADR or saline was administered following ALS guidelines. After 21 min of ALS, defibrillation was performed. Continuous measurements of arterial and venous blood pressures using an electrocardiogram and index of myocardial resistance (IMR) and transit mean time (Tmn) 1 min before and after each injection or peak blood pressure were recorded and compared between the groups. CPP-IMR, amplitude spectrum area (AMSA)-IMR, CPP-Tmn, and AMSA-Tmn correlations were assessed. RESULTS: Compared with six animals in the control group, three in the ADR group achieved a return of spontaneous circulation. No difference was observed in IMR or AMSA; however, significant increases in CPP and arterial end-diastolic blood pressure were observed at several time points. Tmn differed between groups only at two time points. CONCLUSION: Repeated ADR doses during prolonged ALS simulating refractory VF did not improve myocardial microvascular blood flow, as measured using IMR, despite leading to an increase in CPP.
- Publikační typ
- časopisecké články MeSH
There are substantial differences in autonomic nervous system activation among heart (cardiac) failure (CF) patients. The effect of acute CF on autonomic function has not been well explored. The aim of our study was to assess the effect of experimental acute CF on heart rate variability (HRV). Twenty-four female pigs with a mean body weight of 45 kg were used. Acute severe CF was induced by global myocardial hypoxia. In each subject, two 5-min electrocardiogram segments were analyzed and compared: before the induction of myocardial hypoxia and >60 min after the development of severe CF. HRV was assessed by time-domain, frequency-domain and nonlinear analytic methods. The induction of acute CF led to a significant decrease in cardiac output, left ventricular ejection fraction and an increase in heart rate. The development of acute CF was associated with a significant reduction in the standard deviation of intervals between normal beats (50.8 [20.5−88.1] ms versus 5.9 [2.4−11.7] ms, p < 0.001). Uniform HRV reduction was also observed in other time-domain and major nonlinear analytic methods. Similarly, frequency-domain HRV parameters were significantly changed. Acute severe CF induced by global myocardial hypoxia is associated with a significant reduction in HRV.
Venoarterial extracorporeal membrane oxygenation (VA-ECMO) is widely used in the treatment of patients experiencing cardiogenic shock (CS). However, increased VA-ECMO blood flow (EBF) may significantly impair left ventricular (LV) performance. The objective of the present study was to assess the effect of VA-ECMO on LV function in acute CS with concomitant severe aortic stenosis (AS) or mitral regurgitation (MR) in a porcine model. Eight female swine (45 kg) underwent VA-ECMO implantation under general anaesthesia and mechanical ventilation. Acute CS was induced by global myocardial hypoxia. Subsequently, severe AS was simulated by obstruction of the aortic valve, while severe MR was induced by mechanical destruction of the mitral valve. Haemodynamic and LV performance variables were measured at different rates of EBF rates (ranging from 1 to 4 L/min), using arterial and venous catheters, a pulmonary artery catheter, and LV pressure-volume catheter. Data are expressed as median (interquartile range). Myocardial hypoxia resulted in declines in cardiac output to 2.7 (1.9-3.1) L/min and LV ejection fraction to 15.2% (10.5-19.3%). In severe AS, increasing EBF from 1 to 4 L/min was associated with a significant elevation in mean arterial pressure (MAP), from 33.5 (24.2-34.9) to 56.0 (51.9-73.3) mmHg (P ˂ 0.01). However, LV volumes (end-diastolic, end-systolic, stroke) remained unchanged, and LV end-diastolic pressure (LVEDP) significantly decreased from 24.9 (21.2-40.0) to 19.1 (15.2-29.0) mmHg (P ˂ 0.01). In severe MR, increasing EBF resulted in a significant elevation in MAP from 49.0 (28.0-53.4) to 72.5 (51.4-77.1) mmHg (P ˂ 0.01); LV volumes remained stable and LVEDP increased from 17.1 (13.7-19.1) to 20.8 (16.3-25.6) mmHg (P ˂ 0.01). Results of this study indicate that the presence of valvular heart disease may alleviate negative effect of VA-ECMO on LV performance in CS. Severe AS fully protected against LV overload, and partial protection was also detected with severe MR, although at the cost of increased LVEDP and, thus, higher risk for pulmonary oedema.
- MeSH
- aortální stenóza * MeSH
- funkce levé komory srdeční fyziologie MeSH
- hypoxie MeSH
- kardiogenní šok terapie MeSH
- mimotělní membránová oxygenace * metody MeSH
- mitrální insuficience * terapie MeSH
- prasata MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVES: The aim of this study was to quantify and understand the unloading effect of percutaneous balloon atrial septostomy (BAS) in acute cardiogenic shock (CS) treated with venoarterial (VA) extracorporeal membranous oxygenation (ECMO). BACKGROUND: In CS treated with VA ECMO, increased left ventricular (LV) afterload is observed that commonly interferes with myocardial recovery or even promotes further LV deterioration. Several techniques for LV unloading exist, but the optimal strategy and the actual extent of such procedures have not been fully disclosed. METHODS: In a porcine model (n = 11; weight 56 kg [53-58 kg]), CS was induced by coronary artery balloon occlusion (57 minutes [53-64 minutes]). Then, a step-up VA ECMO protocol (40-80 mL/kg/min) was run before and after percutaneous BAS was performed. LV pressure-volume loops and multiple hemoglobin saturation data were evaluated. The Wilcoxon rank sum test was used to assess individual variable differences. RESULTS: Immediately after BAS while on VA ECMO support, LV work decreased significantly: pressure-volume area, end-diastolic pressure, and stroke volume to ∼78% and end-systolic pressure to ∼86%, while superior vena cava and tissue oximetry did not change. During elevating VA ECMO support (40-80 mL/kg/min) with BAS vs without BAS, we observed 1) significantly less mechanical work increase (122% vs 172%); 2) no end-diastolic volume increase (100% vs 111%); and 3) a considerable increase in end-systolic pressure (134% vs 144%). CONCLUSIONS: In acute CS supported by VA ECMO, atrial septostomy is an effective LV unloading tool. LV pressure is a key component of LV work load, so whenever LV work reduction is a priority, arterial pressure should carefully be titrated low while maintaining organ perfusion.
- MeSH
- kardiogenní šok * diagnóza terapie MeSH
- lidé MeSH
- mimotělní membránová oxygenace * metody MeSH
- modely nemocí na zvířatech MeSH
- prasata MeSH
- vena cava superior MeSH
- výsledek terapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The peripheral venoarterial extracorporeal life support (V-A ECLS) in cardiogenic shock (CS) may lead to LV overload. The transaortic suction device (Impella, ABIOMED Inc., Danvers, MA) was compared to the pulmonary artery (PA) drainage, for LV unloading efficacy during V-A ECLS in a porcine cardiogenic shock model. A dedicated CS model included 12 swine (21 ± 1.8-week-old and weighing 54.3 ± 4.6 kg) supported with V-A ECLS and randomized to Impella or PA-related LV drainage. LV unloading and end-organ perfusion were evaluated through the PA catheter and LV pressure/volume analysis. The LV end-diastolic volume sharply dropped with Impella (143.6 ± 67.4 vs 123 ± 75.7 mL) compared to a slight decrease in the PA cannula group (134.1 ± 39.9 vs 130.1 ± 34.7 mL), resulting in an overall stroke work and pressure-volume area reductions with both techniques. However, stroke work reduction was more significant in the Impella group (V-A ECLS 3998.8 ± 2027.6 vs V-A ECLS + Impella 1796.9 ± 1033.9 mm Hg × mL, P = 0.016), leading to a more consistent pressure-volume area reduction (Impella reduction 34.7% vs PA cannula reduction 9.7%) In terms of end organ perfusion, central and mixed O2 saturation improved with V-A ECLS, and subsequently, remaining unchanged with either Impella or PA cannula as unloading strategy (SVmO2: Impella 86.0 ± 5.8 vs 87.8 ± 5.8; PA cannula 82.5 ± 10.7 vs 82.5 ± 11.3 %). Transaortic suction and PA drainage provided effective LV unloading during V-A ECLS while maintaining adequate end-organ perfusion. Impella provides a greater LV unloading effect and reduces more effectively the total LV stroke work.
The study presents a novel vancomycin-releasing collagen wound dressing derived from Cyprinus carpio collagen type I cross-linked with carbodiimide which retarded the degradation rate and increased the stability of the sponge. Following lyophilization, the dressings were subjected to gamma sterilization. The structure was evaluated via scanning electron microscopy images, micro-computed tomography, and infrared spectrometry. The structural stability and vancomycin release properties were evaluated in phosphate buffered saline. Microbiological testing and a rat model of a wound infected with methicillin-resistant Staphylococcus aureus (MRSA) were then employed to test the efficacy of the treatment of the infected wound. Following an initial mass loss due to the release of vancomycin, the sponges remained stable. After 7 days of exposure in phosphate buffered saline (37°C), 60% of the material remained with a preserved collagen secondary structure together with a high degree of open porosity (over 80%). The analysis of the release of vancomycin revealed homogeneous distribution of the antibiotic both across and between the sponges. The release of vancomycin was retarded as proved by in vitro testing and further confirmed by the animal model from which measurable concentrations were observed in blood samples 24 hours after the subcutaneous implantation of the sponge, which was more than observed following intraperitoneal administration. The sponge was also highly effective in terms of reducing the number of colony-forming units in biopsies extracted from the infected wounds 4 days following the inoculation of the wounds with the MRSA solution. The presented sponges have ideal properties to serve as wound dressing for prevention of surgical site infection or treatment of already infected wounds.
- MeSH
- antibakteriální látky farmakokinetika MeSH
- hojení ran účinky léků MeSH
- kapři MeSH
- karbodiimidy farmakokinetika MeSH
- kolagen farmakokinetika MeSH
- krysa rodu rattus MeSH
- methicilin rezistentní Staphylococcus aureus účinky léků MeSH
- obvazy MeSH
- vankomycin farmakokinetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Objectives: Surgical wounds resulting from biofilm-producing microorganisms represent a major healthcare problem that requires new and innovative treatment methods. Rifampin is one of a small number of antibiotics that is able to penetrate such biofilms, and its local administration has the potential to serve as an ideal surgical site infection protection and/or treatment agent. This paper presents two types (homogeneous and sandwich structured) of rifampin-releasing carbodiimide-cross-linked fresh water fish collagen wound dressings. Methods: The dressings were prepared by means of the double-lyophilization method and sterilized via gamma irradiation so as to allow for testing in a form that is able to serve for direct clinical use. The mechanical properties were studied via the uniaxial tensile testing method. The in vivo rifampin-release properties were tested by means of a series of incubations in phosphate-buffered saline. The microbiological activity was tested against methicillin-resistant staphylococcus aureus (MRSA) employing disc diffusion tests, and the in vivo pharmacokinetics was tested using a rat model. A histological examination was conducted for the study of the biocompatibility of the dressings. Results: The sandwich-structured dressing demonstrated better mechanical properties due to its exhibiting ability to bear a higher load than the homogeneous sponges, a property that was further improved via the addition of rifampin. The sponges retarded the release of rifampin in vitro, which translated into at least 22 hours of rifampin release in the rat model. This was significantly longer than was achieved via the administration of a subcutaneous rifampin solution. Microbiological activity was proven by the results of the disc diffusion tests. Both sponges exhibited excellent biocompatibility as the cells penetrated into the scaffold, and virtually no signs of local irritation were observed. Conclusions: We present a novel rifampin-releasing sandwich-structured fresh water fish collagen wound dressing that has the potential to serve as an ideal surgical site infection protection and/or treatment agent.
- MeSH
- antibakteriální látky farmakologie MeSH
- biofilmy účinky léků MeSH
- hojení ran účinky léků MeSH
- infekce chirurgické rány farmakoterapie MeSH
- kolagen farmakologie MeSH
- krysa rodu rattus MeSH
- methicilin rezistentní Staphylococcus aureus účinky léků MeSH
- obvazy MeSH
- potkani Wistar MeSH
- rifampin farmakologie MeSH
- ryby metabolismus MeSH
- sladká voda MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH