Cíl studie: Pronační poloha i vysokofrekvenční oscilační ventilace jsou považovány za metody zlepšující výměnu krevních plynů u pacientů se závažným respiračním selháním, Cílem studie je ověřit vliv jejich kombinace u experimentálního modelu syndromu akutní respirační tísně. Typ studie: Experimentální. Typ pracoviště: Anesteziologicko-resuscitační klinika fakultní nemocnice. Materiál a metoda: Do studie bylo zařazeno 40 experimentálních zvířat – selat. Po premedikaci a instrumentaci byla zvířata ventilována PCV (PEEP 5 cm H2O, FiO2 1,0, I:E 1:2, Vt 5 ml/kg, RR pro normokapnii), plicní postižení bylo vyvoláno opakovanou bilaterální laváží plic fyziologickým roztokem (38 °C, 30 ml/kg) do dosažení PaO2/FiO2 < 100 mm Hg. Po navození experimentálního ARDS byla zvířata randomizována do 5 skupin – kontrolní skupina (PCV v supinní poloze po celou dobu experimentu); PP (PCV v pronační poloze a následně v supinní poloze); HFOV (HFOV v supinní poloze po celou dobu experimentu); HFOV+PP (HFOV v supinní poloze, po 6 hodinách pronační poloha a následně supinní poloha); PP+HFOV (PCV v pronační poloze, po hodinách HFOV, dále střídání supinní a pronační polohy jako u skupiny PP). Nastavení PCV a HFOV bylo stejné u všech zvířat a neměnilo se v průběhu experimentu. Sledované parametry [pH, PaO2, PaCO2 a oxygenační index (OI = 100 x Paw x FiO2/PaO2)] byly zaznamenávány po instrumentaci (baseline), po vyvolání plicního postižení (čas 0 h) a vždy těsně před a 60 minut po změně polohy nebo ventilačního režimu – čas 1, 3, 6, 7, 9, 12, 18, 19, 24 hod a byly porovnány mezi jednotlivými skupinami. Po 24 hodinách byla zvířata utracena předepsaným způsobem. Pro statistické hodnocení byla použita ANOVA test pro opakovaná měření, statistická významnost p < 0,05. Výsledky: Z pohledu oxygenace (PaO2) nebyl rozdíl mezi PP a HFOV, vyšší PaO2 dosahovala PP+HFOV než HFOV+PP. Eliminace CO2 byla lepší u HFOV+PP než u PP+HFOV, nebyl rozdíl mezi PP a HFOV. Nebyl zaznamenán rozdíl v OI mezi PP a HFOV, PP+HFOV měla nižší OI než HFOV+PP. Závěr: Mezi PP a HFOV nebyly rozdíly v oxygenaci a eliminaci CO2, kombinace PP+HFOV je z pohledu oxygenace účinnější.
Objective: The aim of the study was verification of the effect of combination of high-frequency oscillatory ventilation and prone position in an experimental model of acute respiratory distress syndrome. Design: Experimental study. Setting: Department of Anaesthesiology and Intensive Care Medicine, University Hospital. Materials and Methods: The study included 40 experimental piglets. Lung damage was induced by repeated bilateral lung lavage with saline to achieve PaO2/FiO2 < 100 mm Hg. The experimental animals were randomized into 5 groups - control group (PCV in supine position throughout the experiment), PP (PCV in prone position and then in supine position), HFOV (HFOV in supine position throughout the experiment), HFOV + PP (HFOV in supine position, after 6 hours of prone position and then supine position), PP + HFOV (PCV in prone position, after 6 hours HFOV, further rotation of supine and prone positions, as the PP group). Results: In terms of oxygenation (PaO2) there was no difference between the PP and HFOV groups, higher values of PaO2 were achieved in the PP+HFOV group than in the HFOV+PP group. CO2 elimination was better in the HFOV+PP group than in the PP+HFOV group. There was no difference between the PP and HFOV groups. There was no difference in oxygenation index between the PP and HFOV groups, the PP+HFOV group had a lower oxygenation index than the HFOV + PP group. Conclusion: There were no differences in oxygenation and CO2 elimination between the prone position and high-frequency oscillation groups. The combination of PP + HFOV is more efficient in terms of oxygenation.
- Keywords
- ARDS, oxygenace,
- MeSH
- Blood Gas Analysis statistics & numerical data MeSH
- Animal Experimentation MeSH
- Swine MeSH
- Prone Position * MeSH
- Statistics as Topic MeSH
- Supine Position MeSH
- Respiratory Distress Syndrome * therapy MeSH
- Pulmonary Gas Exchange MeSH
- Outcome and Process Assessment, Health Care statistics & numerical data MeSH
- High-Frequency Ventilation * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Comparative Study MeSH
- MeSH
- Acid-Base Equilibrium MeSH
- Blood Gas Analysis methods statistics & numerical data MeSH
- Blood Chemical Analysis * methods statistics & numerical data MeSH
- Clinical Laboratory Techniques * methods instrumentation statistics & numerical data MeSH
- Hydrogen-Ion Concentration MeSH
- Sensitivity and Specificity MeSH
- Calcium blood MeSH
- MeSH
- Acclimatization physiology MeSH
- Blood Gas Analysis methods statistics & numerical data utilization MeSH
- Atmospheric Pressure MeSH
- Adult MeSH
- Mountaineering physiology statistics & numerical data MeSH
- Hypoxia complications blood metabolism MeSH
- Critical Illness nursing therapy MeSH
- Oxygen analysis physiology blood MeSH
- Humans MeSH
- Altitude MeSH
- Blood Specimen Collection methods statistics & numerical data utilization MeSH
- Critical Care methods utilization MeSH
- Diving physiology MeSH
- Emergency Medicine methods MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- MeSH
- Acid-Base Equilibrium physiology MeSH
- Blood Gas Analysis methods statistics & numerical data utilization MeSH
- Adult MeSH
- Mountaineering physiology MeSH
- Oxygen analysis blood metabolism MeSH
- Humans MeSH
- Altitude MeSH
- Emergency Medicine methods MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Keywords
- kapnoperitoneum,
- MeSH
- Blood Gas Analysis statistics & numerical data MeSH
- Hemodynamics MeSH
- Infant MeSH
- Laparoscopy * adverse effects MeSH
- Humans MeSH
- Infant, Newborn * MeSH
- Carbon Dioxide adverse effects MeSH
- Monitoring, Intraoperative statistics & numerical data MeSH
- Pneumoperitoneum, Artificial adverse effects MeSH
- Postoperative Complications MeSH
- Child, Preschool MeSH
- Acidosis, Respiratory complications MeSH
- Body Temperature MeSH
- Age Factors MeSH
- Check Tag
- Infant MeSH
- Humans MeSH
- Infant, Newborn * MeSH
- Child, Preschool MeSH
- Publication type
- Comparative Study MeSH
x
x
- MeSH
- Acid-Base Equilibrium MeSH
- Blood Gas Analysis statistics & numerical data MeSH
- Bacteriological Techniques statistics & numerical data MeSH
- Pulmonary Disease, Chronic Obstructive * complications therapy MeSH
- Inpatients classification MeSH
- Humans MeSH
- Disease Progression MeSH
- Respiratory Function Tests methods instrumentation statistics & numerical data MeSH
- Statistics as Topic MeSH
- Respiration, Artificial * methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Comparative Study MeSH
x
x
- MeSH
- Blood Gas Analysis statistics & numerical data MeSH
- Dyspnea * epidemiology psychology MeSH
- Hypoxia epidemiology MeSH
- Humans MeSH
- Pulmonary Fibrosis * MeSH
- Respiratory Function Tests classification instrumentation statistics & numerical data MeSH
- Check Tag
- Humans MeSH
- Publication type
- Clinical Study MeSH
- MeSH
- Acid-Base Equilibrium MeSH
- Blood Gas Analysis statistics & numerical data MeSH
- Asbestosis * diagnosis MeSH
- Pulmonary Diffusing Capacity MeSH
- Adult MeSH
- Comorbidity MeSH
- Humans MeSH
- Pulmonary Ventilation MeSH
- Occupational Exposure MeSH
- Radiography MeSH
- Respiratory Function Tests * statistics & numerical data MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Publication type
- Clinical Study MeSH