BACKGROUND: Idiopathic normal pressure hydrocephalus (iNPH) is a progressive disease characterized by disproportionate ventricular enlargement at brain imaging with gait disturbance and an increased risk of falling. Gait assessment is a key feature in the diagnosis of iNPH and characterization of post-surgical outcomes. RESEARCH QUESTION: How do gait parameters change 24 h after CSF tap test (CSFTT) and after ventriculoperitoneal shunt surgery? METHODS: The PRISMA guidelines were used to perform the systematic review. We conducted a search of the following electronic databases: PubMed, Medline, Web of Science and EBSCO. We included studies focusing on gait changes occurring 24 h after a CSFTT or after ventriculoperitoneal shunt surgery in patients with iNPH. All articles were assessed for methodological quality using an adapted version of The Standard Quality Assessment Criteria for Evaluating Primary Research Papers checklist. RESULTS: Twenty-seven studies were included in the systematic review. Studies were highly heterogeneous due to lack of standardization of CSFTT or shunt surgery methodology, with varying amounts of CSF removed during the tap test (20-50 ml) and varying time of outcome assessment after shunt surgery. Dynamic equilibrium measurements are generally used to assess preoperative levels of cardinal symptoms and postoperative outcomes in iNPH. The most sensitive spatio-temporal parameter assessed 24 h after CSFTT was self-selected walking speed followed by stride length, which increased significantly. Cadence is hence not suitable to consider in the evaluation of effect of CSFTT and shunt surgery. Changes in balance-related gait parameters after CSFTT and shunt surgery are still a controversial area of research. CONCLUSION: Gait assessment is a key feature in the diagnosis of iNPH and characterization of post-surgical outcomes. Dynamic equilibrium measurements are generally used to assess preoperative levels of cardinal symptoms and postoperative outcomes in iNPH, but quantitative and standardized gait analysis procedures are missing. Changes in balance-related gait parameters after CSFTT might be useful in deciding whether to perform shunt surgery in iNPH patients who hope for improvement in gait ability. The dual-task paradigm after CSFTT could improve the clinical evaluation of higher level frontal gait disturbances in patients with suspected iNPH before shunting.
- MeSH
- chůze (způsob) * fyziologie MeSH
- lidé MeSH
- normotenzní hydrocefalus * chirurgie patofyziologie mozkomíšní mok diagnóza MeSH
- shunty pro odvod mozkomíšního moku MeSH
- spinální punkce metody MeSH
- ventrikuloperitoneální zkrat MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- systematický přehled MeSH
Understanding the intricacies of human movement coordination and variability during running is crucial to unraveling the dynamics of locomotion, identifying potential injury mechanisms and understanding skill development. Identification of minimum number of cycles for calculation of reliable coordination and its variability could help with better test organization and efficient assessment time. By adopting a cross-sectional study design, this study investigated the minimum required cycles for calculating hip-knee, hip-ankle and knee-ankle coordination and their variability using a continuous relative phase (CRP) method. Twenty-nine healthy adults ran on a treadmill at speeds of 9, 12.5, and 16 km.h-1 while 3D kinematic data of their lower limbs were recorded using 6 optoelectronic cameras. Using Intraclass Correlation Coefficient (ICC) analysis, reliability between CRP and its variability (CRPv) in different gait cycles (3, 5, 10, 20, 30) was assessed for each speed. A minimum of 10 cycles was required for CRP calculation across all speeds, whereas CRPv necessitated a minimum of 30 cycles for moderate to good reliability. While increasing the number of cycles improved ICC values for inter-joint CRP, the same trend was not consistently observed for CRPv, emphasizing the importance of separately assessing CRP and its variability metrics.
- MeSH
- běh * fyziologie MeSH
- biomechanika MeSH
- chůze (způsob) * fyziologie MeSH
- dospělí MeSH
- hlezenní kloub * fyziologie MeSH
- kolenní kloub * fyziologie MeSH
- kyčelní kloub fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- průřezové studie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE OF THE STUDY: The study describes changes in gait parameters (temporal-spatial parameters, kinematic parameters represented by the global Gait Deviation Index) of individuals with Adolescent Idiopathic Scoliosis (AIS) compared to the healthy population. The hypothesis assumed a difference in the observed parameters between the two mentioned groups. MATERIAL AND METHODS: In a retrospective study, the temporal-spatial parameters and Gait Deviation Index (GDI) of a cohort of 45 AIS patients (36 girls and 9 boys with the mean age of 15.2 years, the mean Cobb angle of the thoracic curve of 47.3° and the lumbar curve of 51.8°) were compared to a typically developing population of 12 healthy individuals with no musculoskeletal pathology. The difference of followed-up parameters in patients with AIS compared to normal values was assessed by one-sample Student's T-test at the significance level of p = 0.05. RESULTS: The gait analysis shows significant deviations in the gait stereotype of patients with AIS compared to the healthy population. Statistically significant differences within temporal-spatial parameters were confirmed for cadence, walking speed, step time, stride time for left leg, step length, stride length and step width. The mean GDI of the cohort reached the value of 91.07 that indicates a slight alteration of gait, however, even this change is statistically significant. DISCUSSION: In our cohort of patients with AIS, we identified a significantly reduced walking speed (on average 15.4% compared to normal values. At the same time, a reduction in cadence (by an average of 7.5%) and an increase of the stride time (by an average of 12%) were recorded. Our mean GDI values were 91.07, which is consistent with the results reported in the literature for comparable groups of AIS patients. CONCLUSIONS: Our study demonstrated that AIS significantly affects gait stereotype. The differences compared to the group of healthy individuals within temporal-spatial parameters were confirmed for cadence, walking speed, duration and length of step and stride, and step width. The kinematic analysis of gait using the global (GDI) index in patients with AIS demonstrated its slight alteration. A better understanding of the change in movement stereotypes and gait in patients with AIS can bring wider possibilities for individualizing conservative treatment and also can help prevent secondary changes in the locomotor system. KEY WORDS: adolescent idiopathic scoliosis, AIS, gait analysis, Gait Deviation Index, GDI.
- MeSH
- analýza chůze * metody MeSH
- biomechanika MeSH
- chůze (způsob) fyziologie MeSH
- lidé MeSH
- mladiství MeSH
- retrospektivní studie MeSH
- skolióza * patofyziologie MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- anglický abstrakt MeSH
- časopisecké články MeSH
BACKGROUND: Minimalistic footwear provides adequate toe space, tripod function, improving foot function, muscle activation and stability during walking similarly to barefoot walking. Due to the increasing popularity of this specific footwear, there is a lack of research focusing on general users of minimalistic footwear. RESEARCH QUESTION: Does annual walking in minimalistic footwear affect gait biomechanics? METHODS: Cross-sectional study involving twenty participants in a minimalistic footwear group with both experience (MFE) and no experience (NMFE). Participants walked in three different conditions (barefoot, minimalistic, and neutral footwear) in the laboratory at normal human walking speed. RESULTS: A significant main effect of groups regardless of footwear conditions show significantly greater values during walking in minimalistic footwear and barefoot in the stride length (p=0.035, p=0.003, respectively), and stride width (p=0.047, p=0.028, respectively) in the NMFE group compared to MFE group. The significant differences in the main effects of footwear regardless of experience were found in stance time (p<0.001), steps per minute (p<0.001), stride length (<0.001), foot adduction in TO (p<0.001), foot eversion angle in IC and TO (p<0.001, p<0.001, respectively), foot progression angle (p<0.001), ankle dorsiflexion angle in IC and TO (p<0.001, p<0.001, respectively), in ankle eversion angle in IC and TO (p<0.001, p<0.001, respectively), knee flexion angle in IC and TO (p<0.001; p<0.001, respectively), and in knee flexion range of motion (p<0.001). SIGNIFICANCE: Based on our findings, barefoot walking should be used primarily during daily activities if the environment is conducive. Only one year of experience with minimalistic footwear seems insufficient and an intervention should be incorporated to change the gait pattern when transitioning to full minimalistic footwear walking.
- MeSH
- biomechanika MeSH
- chůze (způsob) * fyziologie MeSH
- chůze * fyziologie MeSH
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- noha (od hlezna dolů) fyziologie MeSH
- obuv * MeSH
- průřezové studie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
This study was aimed to compare the variability of inter-joint coordination in the lower-extremities during gait between active individuals with transtibial amputation (TTAs) and healthy individuals (HIs). Fifteen active male TTAs (age: 40.6 ± 16.24 years, height: 1.74 ± 0.09 m, and mass: 71.2 ± 8.87 kg) and HIs (age: 37.25 ± 13.11 years, height: 1.75 ± 0.06 m, and mass: 74 ± 8.75 kg) without gait disabilities voluntarily participated in the study. Participants walked along a level walkway covered with Vicon motion capture system, and their lower-extremity kinematics data were recorded during gait. The spatiotemporal gait parameters, lower-extremity joint range of motion (ROM), and their coordination and variability were calculated and averaged to report a single value for each parameter based on biomechanical symmetry assumption in the lower limbs of HIs. Additionally, these parameters were separately calculated and reported for the intact limb (IL) and the prosthesis limb (PL) in TTAs individuals. Finally, a comparison was made between the averaged values in HIs and those in the IL and PL of TTAs subjects. The results showed that the IL had a significantly lower stride length than that of the PL and averaged value in HIs, and the IL had a significantly lower knee ROM and greater stance-phase duration than that of HIs. Moreover, TTAs showed different coordination patterns in pelvis-to-hip, hip-to-knee, and hip-to-ankle couplings in some parts of the gait cycle. It concludes that the active TTAs with PLs walked with more flexion of the knee and hip, which may indicate a progressive walking strategy and the differences in coordination patterns suggest active TTA individuals used different neuromuscular control strategies to adapt to their amputation. Researchers can extend this work by investigating variations in these parameters across diverse patient populations, including different amputation etiologies and prosthetic designs. Moreover, Clinicians can use the findings to tailor rehabilitation programs for TTAs, emphasizing joint flexibility and coordination.
- MeSH
- amputace * MeSH
- amputovaní MeSH
- biomechanika MeSH
- chůze (způsob) * fyziologie MeSH
- chůze fyziologie MeSH
- dolní končetina MeSH
- dospělí MeSH
- hlezenní kloub patofyziologie MeSH
- kolenní kloub patofyziologie chirurgie MeSH
- kyčelní kloub chirurgie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- rozsah kloubních pohybů * MeSH
- tibie chirurgie patofyziologie MeSH
- umělé končetiny * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Independent walking is an important milestone in a child's development. The maturation of central nervous system, changes in body proportions, spatiotemporal parameters of gait and their variability change are dependent on age. The first aim of this study was to compare non-normalized and normalized spatiotemporal parameters and their variability in children. The second aim was to determine which spatiotemporal parameters are most affected by aging. Data from 64 typically developing children (age: 2.0-6.9 years), who walked at a self-selected speed along a 10m walkway, were collected with a motion capture system. Spatiotemporal parameters were normalized based on leg length. The main effect of the non-normalized walking speed revealed a moderate effect size (ES = 0.72) comparing 2- and 3-years-old, a large effect size comparing 2- and 6-years-old (ES = 1.77), and a large ES comparing 3- and 6-years-old (ES = 1.22). The normalized stride width parameter showed a statistically significant difference with large effect size between 2 vs 3 (ES = 1.00), 2 vs 6 (ES = 3.17), and 3 vs 6 (ES = 1.96). A statistically significant decrease in intra-individual gait variability with increasing age was observed in all parameters except for stride width. The variability of stride width may serve as a parameter in 2-year-olds to assess deviations from typically developing children. The assessment of effect size could be a useful indicator for clinical practice.
- MeSH
- chůze (způsob) * fyziologie MeSH
- chůze * fyziologie MeSH
- dítě MeSH
- lidé MeSH
- předškolní dítě MeSH
- rychlost chůze fyziologie MeSH
- snímání pohybu MeSH
- stárnutí fyziologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Different multi-segment foot models have been used to explore the effect of foot orthoses. Previous studies have compared the kinematic output of different multi-segment foot models, however, no study has explored if different multi-segment foot models detect similar kinematic changes when wearing a foot orthoses. The aim of this study was to compare the ability of two different multi-segment foot models to detect kinematic changes at the hindfoot and forefoot during the single and double support phases of gait when wearing a foot orthosis. METHODS: Foot kinematics were collected during walking from a sample of 32 individuals with and without a foot orthosis with a medial heel bar using an eight-camera motion capture system. The Oxford Foot Model (OFM) and a multi-segment foot model using the Calibrated Anatomical System Technique (CAST) were applied simultaneously. Vector field statistical analysis was used to explore the kinematic effects of a medial heel bar using the two models, and the ability of the models to detect any changes in kinematics was compared. RESULTS: For the hindfoot, both models showed very good agreement of the effect of the foot orthosis across all three anatomical planes during the single and double support phases. However, for the forefoot, the level of agreement between the models varied with both models showing good agreement of the effect in the coronal plane but poorer agreement in the transverse and sagittal planes. CONCLUSIONS: This study showed that while consistency exists across both models for the hindfoot and forefoot in the coronal plane, the forefoot in the transverse and sagittal planes showed inconsistent responses to the foot orthoses. This should be considered when interpreting the efficacy of different interventions which aim to change foot biomechanics.
- MeSH
- biomechanika fyziologie MeSH
- chůze (způsob) fyziologie MeSH
- chůze fyziologie MeSH
- lidé MeSH
- noha (od hlezna dolů) fyziologie MeSH
- ortézy nohy (od hlezna dolů) * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
We conducted an exploratory analysis to compare running kinematics of 16 male recreational runners wearing Nike Vaporfly 4% (VP4), Saucony Endorphin racing flat (FLAT), and their habitual (OWN) footwear. We also explored potential relationships between kinematic and physiological changes. Runners (age: 33 ± 12 y, V ̇ O2peak: 55.2 ± 4.3 ml · kg-1·min-1) attended 3 sessions after completing an V ̇ O2peak test in which sagittal plane 3D kinematics at submaximal running speeds (60%, 70% and 80% ʋ V ̇ O2peak) were collected alongside economy measures. Kinematics were compared using notched boxplots, and between-shoe kinematic differences were plotted against between-shoe economy differences. Across intensities, VP4 involved longer flight times (6.7 to 10.0 ms) and lower stance hip range of motion (~3°), and greater vertical pelvis displacement than FLAT (~0.4 cm). Peak dorsiflexion angles (~2°), ankle range of motion (1.0° to 3.9°), and plantarflexion velocities (11.3 to 89.0 deg · sec-1) were greatest in FLAT and lowest in VP4. Foot-ground angles were smaller in FLAT (2.5° to 3.6°). Select kinematic variables were moderately related to economy, with higher step frequencies and shorter step lengths in VP4 and FLAT associated with improved economy versus OWN. Footwear changes from OWN altered running kinematics. The most pronounced differences were observed in ankle, spatiotemporal, and foot-ground angle variables.
- MeSH
- běh * fyziologie MeSH
- biomechanika fyziologie MeSH
- chůze (způsob) fyziologie MeSH
- dospělí MeSH
- hlezenní kloub fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- noha (od hlezna dolů) fyziologie MeSH
- obuv * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Mobile phone use affects the dynamics of gait by impairing visual control of the surrounding environment and introducing additional cognitive demands. Although it has been shown that using a mobile phone alters whole-body dynamic stability, no clear information exists on its impacts on motor variability during gait. This study aimed at assessing the impacts of various types of mobile phone use on motor variability during gait; quantified using the short- and long-term Lyapunov Exponent (λS and λL) of lower limb joint angles and muscle activation patterns, as well as the centre of mass position. Fourteen females and Fifteen males (27.72 ± 4.61 years, body mass: 70.24 ± 14.13 Kg, height: 173.31 ± 10.97 cm) walked on a treadmill under six conditions: normal walking, normal walking in low-light, walking while looking at the phone, walking while looking at the phone in low-light, walking and talking on the phone, and walking and listening to music. Variability of the hip (p λS = .015, λL = .043) and pelvis (p λS = .039, λL = .017) joint sagittal angles significantly increased when the participants walked and looked at the phone, either in normal or in low-light conditions. No significant difference was observed in the variability of the centre of mass position and muscle activation patterns. When individuals walk and look at the phone screen, the hip and knee joints are constantly trying to adopt a new angle to regulate and maintain gait stability, which might put an additional strain on the neuromuscular system. To this end, it is recommended not to look at the mobile phone screen while walking, particularly in public places with higher risks of falls.
OBJECTIVE: Long-term physiotherapy is of considerable benefit to patients with multiple sclerosis (MS) who have motor dysfunction or gait impairment. The aim of this study was to determine the effectiveness of a 12-week intensive circuit class therapy for patients with MS, with a wider focus on fatigue and gait ability. METHODS: A total of 46 patients with relapsing-remitting MS were divided randomly into 2 groups: 23 patients (mean Expanded Disability Status Scale (EDSS) 2.33 ± 0.74) participated in an intensive 12-week course of intensive circuit class therapy, and 23 patients (mean EDSS 2.04 ± 0.63) served as a control group. The EDSS, Timed Up and Go (TUG) test and Four-Stage Balance Test (FSBT) made up the physical testing part, supplemented by questionnaires such as the Modified Fatigue Impact Scale (MFIS), 12-Item Multiple Sclerosis Walking Scale (MSWS-12), Beck Depression Inventory (BDI) and 36-Item Short Form Survey (SF-36). RESULTS: Significant improvements were found among intensive circuit class therapy-exercising patients in FSBT (p < 0.05), TUG test (p < 0.01), MFIS (p < 0.01), BDI (p < 0.05), MSWS-12 (p < 0.05) and the 3 subscales of SF-36 after 12 weeks of intensive circuit class therapy, while there were no significant changes in the control group. CONCLUSION: Intensive circuit class therapy is an effective therapeutic approach for improving gait and balance problems in patients with MS. It has also proved to alleviate fatigue and symptoms of depression.