One of the main contributors to pharmaceutical pollution of surface waters are non-steroidal anti-inflammatory drugs (NSAIDs) that contaminate the food chain and affect non-target water species. As there are not many studies focusing on toxic effects of NSAIDs on freshwater fish species and specially effects after dietary exposure, we selected rainbow trout (Oncorhynchus mykiss) as the ideal model to examine the impact of two NSAIDs - diclofenac (DCF) and ibuprofen (IBP). The aim of our study was to test toxicity of environmentally relevant concentrations of these drugs together with exposure doses of 100× higher, including their mixture; and to deepen knowledge about the mechanism of toxicity of these drugs. This study revealed kidneys as the most affected organ with hyalinosis, an increase in oxidative stress markers, and changes in gene expression of heat shock protein 70 to be signs of renal toxicity. Furthermore, hepatotoxicity was confirmed by histopathological analysis (i.e. dystrophy, congestion, and inflammatory cell increase), change in biochemical markers, increase in heat shock protein 70 mRNA, and by oxidative stress analysis. The gills were locally deformed and showed signs of inflammatory processes and necrotic areas. Given the increase in oxidative stress markers and heat shock protein 70 mRNA, severe impairment of oxygen transport may be one of the toxic pathways of NSAIDs. Regarding the microbiota, an overgrowth of Gram-positive species was detected; in particular, significant dysbiosis in the Fusobacteria/Firmicutes ratio was observed. In conclusion, the changes observed after dietary exposure to NSAIDs can influence the organism homeostasis, induce ROS production, potentiate inflammations, and cause gut dysbiosis. Even the environmentally relevant concentration of NSAIDs pose a risk to the aquatic ecosystem as it changed O. mykiss health parameters and we assume that the toxicity of NSAIDs manifests itself at the level of mitochondria and proteins.
- MeSH
- antiflogistika nesteroidní metabolismus MeSH
- biologické markery metabolismus MeSH
- chemické látky znečišťující vodu * metabolismus MeSH
- diklofenak metabolismus MeSH
- dysbióza MeSH
- ekosystém MeSH
- epidemický výskyt choroby MeSH
- ibuprofen metabolismus toxicita MeSH
- kyslík metabolismus MeSH
- léčivé přípravky metabolismus MeSH
- messenger RNA metabolismus MeSH
- Oncorhynchus mykiss * metabolismus MeSH
- oxidační stres MeSH
- proteiny tepelného šoku HSP70 metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- střevní mikroflóra * MeSH
- voda metabolismus MeSH
- zánět chemicky indukované MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Cyanobacteria are known for their ability to produce and release mixtures of up to thousands of compounds into the environment. Recently, the production of novel metabolites, retinoids, was reported for some cyanobacterial species along with teratogenic effects of samples containing these compounds. Retinoids are natural endogenous substances derived from vitamin A that play a crucial role in early vertebrate development. Disruption of retinoid signalling- especially during the early development of the nervous system- might lead to major malfunctions and malformations. In this study, the toxicity of cyanobacterial biomass samples from the field containing retinoids was characterized by in vivo and in vitro bioassays with a focus on the potential hazards towards nervous system development and function. Additionally, in order to identify the compounds responsible for the observed in vitro and in vivo effects the complex cyanobacterial extracts were fractionated (C18 column, water-methanol gradient) and the twelve obtained fractions were tested in bioassays. In all bioassays, all-trans retinoic acid (ATRA) was tested along with the environmental samples as a positive control. Retinoid-like activity (mediated via the retinoic acid receptor, RAR) was measured in the transgenic cell line p19/A15. The in vitro assay showed retinoid-like activity by specific interaction with RAR for the biomass samples. Neurotoxic effects of selected samples were studied on zebrafish (Danio rerio) embryos using the light/dark transition test (Viewpoint, ZebraLab system) with 120 hpf larvae. In the behavioural assay, the cyanobacterial extracts caused significant hyperactivity in zebrafish at 120 hpf after acute exposure (3 h prior to the measurement) at concentrations below the teratogenicity LOEC (0.2 g dw L-1). Similar effect was observed after exposure to fractions of the extracts with detected retinoid-like activity and additive effect was observed after combining the fractions. However, the effect on behaviour was not observed after exposure to ATRA only. To provide additional insight into the behavioural effects and describe the underlying mechanism gene expression of selected biomarkers was measured. We evaluated an array of 28 genes related to general toxicity, neurodevelopment, retinoid and thyroid signalling. We detected several affected genes, most notably, the Cyp26 enzymes that control endogenous ATRA concentration, which documents an effect on retinoid signalling.
- MeSH
- biomasa MeSH
- biotest MeSH
- chemické látky znečišťující vodu metabolismus toxicita MeSH
- chování zvířat účinky léků MeSH
- dánio pruhované růst a vývoj metabolismus MeSH
- embryo nesavčí účinky léků metabolismus MeSH
- exprese genu účinky léků MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- receptory kyseliny retinové genetika metabolismus MeSH
- sinice růst a vývoj metabolismus MeSH
- tretinoin metabolismus toxicita MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Herbicides and their metabolites are often detected in water bodies where they may cause adverse effects to non-target organisms. Their effects at environmentally relevant concentrations are often unclear, especially concerning mixtures of pesticides. This study thus investigated the impacts of one of the most used herbicides: S-metolachlor and its two metabolites, metolachlor oxanilic acid (MOA) and metolachlor ethanesulfonic acid (MESA) on the development of zebrafish embryos (Danio rerio). Embryos were exposed to the individual substances and their environmentally relevant mixture until 120 hpf (hours post-fertilization). The focus was set on sublethal endpoints such as malformations, hatching success, length of fish larvae, spontaneous movements, heart rate and locomotion. Moreover, expression levels of eight genes linked to the thyroid system disruption, oxidative stress defense, mitochondrial metabolism, regulation of cell cycle and retinoic acid (RA) signaling pathway were analyzed. Exposure to S-metolachlor (1 μg/L) and the pesticide mixture (1 μg/L of each substance) significantly reduced spontaneous tail movements of 21 hpf embryos. Few rare developmental malformations were observed, but only in larvae exposed to more than 100 μg/L of individual substances (craniofacial deformation, non-inflated gas bladder, yolk sac malabsorption) and to 30 μg/L of each substance in the pesticide mixture (spine deformation). No effect on hatching success, length of larvae, heart rate or larvae locomotion were found. Strong responses were detected at the molecular level including induction of p53 gene regulating the cell cycle (the pesticide mixture - 1 μg/L of each substance; MESA 30 μg/L; and MOA 100 μg/L), as induction of cyp26a1 gene encoding cytochrome P450 (pesticide mixture - 1 μg/L of each substance). Genes implicated in the thyroid system regulation (dio2, thra, thrb) were all overexpressed by the environmentally relevant concentrations of the pesticide mixture (1 μg/L of each substance) and MESA metabolite (1 μg/L). Zebrafish thyroid system disruption was revealed by the overexpressed genes, as well as by some related developmental malformations (mainly gas bladder and yolk sac abnormalities), and reduced spontaneous tail movements. Thus, the thyroid system disruption represents a likely hypothesis behind the effects caused by the low environmental concentrations of S-metolachlor, its two metabolites and their mixture.
- MeSH
- acetamidy metabolismus toxicita MeSH
- chemické látky znečišťující vodu metabolismus toxicita MeSH
- dánio pruhované metabolismus MeSH
- embryo nesavčí účinky léků metabolismus MeSH
- embryonální vývoj účinky léků MeSH
- herbicidy metabolismus toxicita MeSH
- larva MeSH
- štítná žláza účinky léků embryologie MeSH
- synergismus léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The purpose was to investigate a simultaneous biodegradation of the recalcitrant monoazo dye Reactive Orange 16 (RO16) in a mixed culture consisting of a biofilm of Pleurotus ostreatus-colonizing polyamide carrier and a suspension of the yeast Candida zeylanoides to see their biological interactions and possible synergistic action during degradation. Decolorization in the mixed culture was more effective than in the fungal monoculture, the respective decolorizations reaching 87.5% and 70% on day 11. The proliferation of yeast was reduced compared with the C. zeylanoides monoculture but enabled the yeast to participate in decolorization. The interaction of P. ostreatus with the yeast resulted in a gradual decrease of fungal manganese-dependent peroxidase (MnP) and laccase activities. Gas chromatography-mass spectrometry (GC-MS) analysis of the degradation products brought evidence that P. ostreatus split the dye molecule asymmetrically to provide 4-(ethenylsulfonyl) benzene whose concentration was much decreased in the mixed culture suggesting its increased metabolization in the presence of the yeast. In contrast, C. zeylanoides split the azo bond symmetrically producing the metabolites 4-(ethenylsulfonyl) aniline and α-hydroxybenzenepropanoic acid. Those metabolites were rapidly degraded in the mixed culture. A novel aspect is represented by the evidence of a mutual cooperative action of the fungal and yeast microorganisms in the mixed culture resulting in rapid decolorization and degradation of the dye.
- MeSH
- azosloučeniny metabolismus MeSH
- biodegradace MeSH
- biofilmy MeSH
- chemické látky znečišťující vodu metabolismus MeSH
- fungální proteiny metabolismus MeSH
- lakasa metabolismus MeSH
- metabolické sítě a dráhy MeSH
- mikrobiální interakce MeSH
- peroxidasy metabolismus MeSH
- Pleurotus růst a vývoj metabolismus MeSH
- Saccharomycetales růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Brown mud, as a waste product of the industrial process of aluminum production, represents a great environmental burden due to its toxicity to living organisms. However, some microorganisms are able to survive in this habitat, and they can be used in bioremediation processes. Traditional cultivation methods have a limited capacity to characterize bacterial composition in environmental samples. Recently, next-generation sequencing methods have provided new perspectives on microbial community studies. The aim of this study was to analyze the bacterial community in the drainage water of brown mud disposal site near Žiar nad Hronom (Banská Bystrica region, Slovakia) using 454 pyrosequencing. We obtained 9964 sequences assigned to 163 operational taxonomic units belonging to 10 bacterial phyla. The phylum Proteobacteria showed the highest abundance (80.39%) within the bacterial community, followed by Firmicutes (13.05%) and Bacteroidetes (5.64%). Other bacterial phyla showed an abundance lower than 1%. The classification yielded 85 genera. Sulfurospirillum spp. (45.19%) dominated the bacterial population, followed by Pseudomonas spp. (13.76%) and Exiguobacterium spp. (13.02%). These results indicate that high heavy metals content, high pH, and lack of essential nutrients are the drivers of a dramatic reduction of diversity in the bacterial population in this environment.
- MeSH
- Bacteria klasifikace genetika izolace a purifikace MeSH
- biodegradace MeSH
- biodiverzita * MeSH
- chemické látky znečišťující vodu analýza metabolismus MeSH
- fylogeneze MeSH
- fyziologie bakterií * MeSH
- hutnictví MeSH
- koncentrace vodíkových iontů MeSH
- mikrobiální společenstva genetika MeSH
- odpadní voda chemie mikrobiologie MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- těžké kovy analýza metabolismus MeSH
- vysoce účinné nukleotidové sekvenování * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Slovenská republika MeSH
ISCO using activated sodium persulphate is a widely used technology for treating chlorinated solvent source zones. In sensitive areas, however, high groundwater sulphate concentrations following treatment may be a drawback. In situ biogeochemical transformation, a technology that degrades contaminants via reduced iron minerals formed by microbial activity, offers a potential solution for such sites, the bioreduction of sulphate and production of iron sulphides that abiotically degrade chlorinated ethenes acting as a secondary technology following ISCO. This study assesses this approach in the field using hydrochemical and molecular tools, solid phase analysis and geochemical modelling. Following a neutralisation and bioaugmentation, favourable conditions for iron- and sulphate-reducers were created, resulting in a remarkable increase in their relative abundance. The abundance of dechlorinating bacteria (Dehalococcoides mccartyi, Dehalobacter sp. and Desulfitobacterium spp.) remained low throughout this process. The activity of iron- and sulphate-reducers was further stimulated through application of magnetite plus starch and microiron plus starch, resulting in an increase in ferrous iron concentration (from
- MeSH
- chemické látky znečišťující vodu analýza metabolismus MeSH
- chlor metabolismus MeSH
- Chloroflexi metabolismus MeSH
- čištění vody metody MeSH
- Desulfitobacterium metabolismus MeSH
- ethyleny metabolismus MeSH
- halogenace MeSH
- oxidace-redukce MeSH
- Peptococcaceae metabolismus MeSH
- podzemní voda analýza chemie mikrobiologie MeSH
- regenerace a remediace životního prostředí metody MeSH
- rozpouštědla metabolismus MeSH
- sírany metabolismus MeSH
- sloučeniny sodíku MeSH
- tetrachlorethylen analýza metabolismus MeSH
- trichlorethylen analýza metabolismus MeSH
- železo metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
In this study we have identified and characterized microplastic particles (MPs) found in six fish species of commercial importance in central Chile. The fish species belong to different trophic levels and were obtained from the oceanic and coastal habitats. To analyze MPs, the fish gastrointestinal content was extracted, analyzed and characterized using a microscopy equipped with Fourier-transform infrared spectroscopy (FT-IR). The MPs found in fish samples were mainly constituted by red microfibers (70-100%) with sizes ranging between 176 and 2842 μm. Polyester, polyethylene (PE) and polyethylene terephthalate (PET) were identified as the prevalent polymers detected. The coastal species showed the presence of microfibers with a higher size and abundance (71%) compared to oceanic species (29%), suggesting there is a greater exposure risk. These findings are consistent with results found in other investigations worldwide. However, further research is still needed to accurately establish the potential exposure risk for the public consuming these fish and the impact of MPs in the Chilean fishery activities.
- MeSH
- chemické látky znečišťující vodu analýza metabolismus MeSH
- ekosystém MeSH
- gastrointestinální obsah chemie MeSH
- monitorování životního prostředí metody MeSH
- oceány a moře MeSH
- plastické hmoty analýza metabolismus MeSH
- potrava z moře (živočišná) analýza MeSH
- ryby metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Chile MeSH
- oceány a moře MeSH
The bacterial strain KDF8 capable of growth in the presence of diclofenac and codeine analgesics was obtained after chemical mutagenesis of nature isolates from polluted soils. The strain KDF8 was identified as Raoultella sp. based on its morphology, biochemical properties, and 16S rRNA gene sequence. It was deposited in the Czech Collection of Microorganisms under the number CCM 8678. A growing culture efficiently removed diclofenac (92% removal) and partially also codeine (about 30% degradation) from culture supernatants within 72 h at 28 °C. The degradation of six analgesics by the whole cell catalyst was investigated in detail. The maximum degradation of diclofenac (91%) by the catalyst was achieved at pHINI of 7 (1 g/L diclofenac). The specific removal rate at high concentrations of diclofenac and codeine increased up to 16.5 mg/gCDW per h and 5.1 mg/gCDW per h, respectively. HPLC analysis identified 4'-hydroxydiclofenac as a major metabolite of diclofenac transformation and 14-hydroxycodeinone as codeine transformation product. The analgesics ibuprofen and ketoprofen were also removed, albeit to a lower extent of 3.2 and 2.0 mg/gCDW per h, respectively. Naproxen and mefenamic acid were not degraded.
- MeSH
- analgetika metabolismus toxicita MeSH
- chemické látky znečišťující vodu metabolismus MeSH
- diklofenak metabolismus toxicita MeSH
- DNA bakterií genetika MeSH
- Enterobacteriaceae klasifikace účinky léků metabolismus MeSH
- fylogeneze MeSH
- kodein metabolismus toxicita MeSH
- koncentrace vodíkových iontů MeSH
- mikrobiální viabilita účinky léků MeSH
- půdní mikrobiologie MeSH
- RNA ribozomální 16S genetika MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
White-rot fungi are renowned for their remarkable potential to degrade a wide range of organic pollutants. They are applicable in standard bioreactors offering both the use of the continuous mode of action and easy upscaling of the biodegradation process. The recent advance in this field consisted in the use of various fungi and different types of reactors in the treatment of real wastewaters. Most degradation studies involving white-rot fungi carried out so far used controlled, aseptic conditions. However, during bioremediation of real wastewaters, the degradation capacity of the fungi would be significantly affected by autochthonous microorganisms. Consequently, for the development of sustainable bioremediation technologies, it is important to understand the mechanisms involved in the intermicrobial interactions occurring during the bioremediation process. This review summarizes recent applications of white-rot fungi to biodegradation of recalcitrant organopollutants under non-sterile conditions describing the invading microorganism(s) and the way how they affect the stability and degradation efficiency of the fungal bioreactor cultures. In addition, studies where fungal cultures were exposed to defined microbial stress are also reported documenting the effect and mechanisms of microbial interactions. Advanced OMICs techniques, specifically the genomics and metabolomics analyses, are suggested to help in identification of the invading microorganisms and in discovery of mechanisms taking part in the interspecific interactions.
- MeSH
- Basidiomycota genetika metabolismus MeSH
- biodegradace MeSH
- bioreaktory mikrobiologie MeSH
- chemické látky znečišťující vodu metabolismus MeSH
- genomika MeSH
- houby genetika metabolismus MeSH
- metabolomika MeSH
- mikrobiální interakce * MeSH
- odpad tekutý - odstraňování metody MeSH
- odpadní voda mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Concerns regarding the potential toxic effects of zinc oxide nanoparticles (ZnO NPs) on aquatic organisms are growing due to the fact that NPs may be released into aquatic ecosystems. This study aimed to investigate the effects of dietary exposure to ZnO NPs on juvenile common carp (Cyprinus carpio). Fish were fed a spiked diets at doses 50 and 500mg of ZnO NPs per kg of feed for 6 weeks followed by a 2-week recovery period. Fish were sampled every 2 weeks for haematology trends, blood biochemistry measures, histology analyses, and determination of the accumulation of zinc in tissues. At the end of the exposure and post-exposure periods, fish were sampled for an assessment of lipid peroxidation levels. Dietborne ZnO NPs had no effects on haematology, blood biochemistry, and lipid peroxidation levels during the exposure period. After the recovery period, aspartate aminotransferase activity significantly (p < 0.05) increased and alanine transferase activity significantly (p < 0.05) decreased in the higher exposure group. The level of lipid peroxidation significantly (p < 0.05) decreased in liver of treated fish after 2 weeks post-exposure period. A histological examination revealed mild histopathological changes in kidneys during exposure. Our results did not show a significant increase of zinc content at the end of experiment in any of tested organs. However, chronic dietary exposure to ZnO NPs might affect kidney and liver function.
- MeSH
- časové faktory MeSH
- chemické látky znečišťující vodu metabolismus toxicita MeSH
- dieta MeSH
- játra účinky léků metabolismus MeSH
- kapři metabolismus fyziologie MeSH
- kovové nanočástice toxicita MeSH
- ledviny účinky léků metabolismus MeSH
- monitorování životního prostředí metody MeSH
- oxid zinečnatý metabolismus toxicita MeSH
- oxidační stres účinky léků MeSH
- peroxidace lipidů účinky léků MeSH
- tkáňová distribuce MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH