The use of microorganisms as reducing and stabiliz-ing agents in biogenic syntheses of metal nanoparticles is an attractive approach. There is a large number of potential bioagents able to yield big amounts of various biomole-cules, and to prepare nanoparticles of diverse physico-chemical properties. Microscopic fungi and algae are widely studied for the preparation of nanoparticles, mainly because of their ability to produce vast amounts of extra-cellular proteins, enzymes, and other metabolites that can actively participate in the metal reduction and also contrib-ute to the nanoparticle stabilization. This results in highly stable metal nanoparticles with interesting properties that can be used, for example, as antimicrobial agents (especially Ag or Cu nanoparticles) or as catalysts. This review summarizes the main, promising representatives of microscopic fungi, yeasts, and algae used for the prepara-tion of nanoparticles of various metals.
The Streptomyces sp. strain AV05 isolated from an organic amendment was found to impact both growth and fumonisin production of Fusarium verticillioides during in vitro direct confrontation. In order to investigate the interactions between the Streptomyces sp. strain AV05 and F. verticillioides, a metabolomic approach was used. The study of the endometabolomes of the microorganisms was carried out in two different conditions: the microorganisms were cultivated alone or in confrontation. The aim of this study was to examine the modifications of the endometabolome of F. verticillioides in confrontation with the Streptomyces strain. The metabolites involved in these modifications were identified using 2D NMR. Many metabolites were found to be overproduced in confrontation assays with the Streptomyces strain, notably 16 proteinogenic amino acids, inosine, and uridine. This suggested that fungal metabolic pathways such as protein synthesis have been affected due to interaction. Thus, metabolomic studies, as well as proteomics or transcriptomics, are useful for deciphering the mechanisms of interactions between biological control agents and mycotoxigenic fungi. This comprehension is one of the key elements of the improvement of the selection and use of antagonistic agents.
The aim of this study was to assess the effects of T-2 toxin-contaminated feed (at concentrations of 1.0 and 1.8 mg/kg) on the rainbow trout immune system by studying non-specific cellular and humoral immune responses and its effect on red and white blood cells. Consumption of T-2 toxin at both concentrations resulted in significantly increased erythrocyte counts and a decrease in mean corpuscular volume. While a significant decrease in mean corpuscular haemoglobin was observed at both experimental concentrations, the decrease in plasma haemoglobin was only significant at the higher T-2 toxin concentration. Higher T-2 toxin concentrations resulted in a significant increase in leukocyte and lymphocyte count, while absolute phagocyte count and counts of less mature neutrophil granulocyte forms remained unchanged at both concentrations. Non-specific humoral immunity (bactericidal activity measured as complement activation) decreased significantly in both experimental groups when compared with the control. The results of this study show that T-2 toxin in feed at a concentration range of 1.0-1.8 mg/kg influences the immunological defence mechanisms of rainbow trout.Trial registration number, MSMT-3876/2014-14; date of registration, 31/1/2014.
- MeSH
- Fusarium chemie metabolismus MeSH
- hemoglobiny metabolismus MeSH
- humorální imunita účinky léků MeSH
- kontaminace potravin analýza MeSH
- krmivo pro zvířata analýza MeSH
- Oncorhynchus mykiss krev imunologie metabolismus mikrobiologie MeSH
- počet erytrocytů MeSH
- počet leukocytů MeSH
- T-2 toxin analýza metabolismus toxicita MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Chemical analyses of Fusarium avenaceum grown on banana medium resulted in eight novel spiroleptosphols, T1, T2 and U-Z (1-8). The structures were elucidated by a combination of high-resolution mass spectrometric data and 1- and 2-D NMR experiments. The relative stereochemistry was assigned by 1H coupling and NOESY/ROESY experiments. Absolute stereochemistry established for 7 by vibrational circular dichroism was found analogous to that of the putative polyketide spiroleptosphol from Leptosphaeria doliolum.
Beauvericin (BEA) is a cyclic hexadepsipeptide, which derives from Cordyceps cicadae. It is also produced by Fusarium species, which are parasitic to maize, wheat, rice and other important commodities. BEA increases ion permeability in biological membranes by forming a complex with essential cations, which may affect ionic homeostasis. Its ion-complexing capability allows BEA to transport alkaline earth metal and alkali metal ions across cell membranes. Importantly, increasing lines of evidence show that BEA has an anticancer effect and can be potentially used in cancer therapeutics. Normally, BEA performs the anticancer effect due to the induced cancer cell apoptosis via a reactive oxygen species-dependent pathway. Moreover, BEA increases the intracellular Ca2+ levels and subsequently regulates the activity of a series of signalling pathways including MAPK, JAK/STAT, and NF-κB, and finally causes cancer cell apoptosis. In vivo studies further show that BEA reduces tumour volumes and weights. BEA especially targets differentiated and invasive cancer types. Currently, the anticancer activity of BEA is a hot topic; however, there is no review article to discuss the anticancer activity of BEA. Therefore, in this review, we have mainly summarized the anticancer activity of BEA and thoroughly discussed its underlying mechanisms. In addition, the human exposure risk assessment of BEA is also discussed. We hope that this review will provide further information for understanding the anticancer mechanisms of BEA.
- MeSH
- antitumorózní látky farmakologie toxicita MeSH
- depsipeptidy farmakologie toxicita MeSH
- Fusarium chemie MeSH
- hodnocení rizik MeSH
- lidé MeSH
- mykotoxiny farmakologie toxicita MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Fusarium toxins, secondary metabolites of toxinogenic Fusarium species, are found in a range of cereal grains. In this study the occurrence of the most commonest Fusarium toxins, namely nivalenol (NIV), deoxynivalenol (DON), deoxynivalenol-3-glucoside, fusarenon-X, 3- and 15-acetyldeoxynivalenol, HT-2 and T-2 toxins and zearalenone, in various barley cultivars harvested in 2005-2008 was monitored. The impact of weather, locality, fungicide treatment and barley cultivar (hulless or covered) on contamination was evaluated. The transfer of these mycotoxins into malt was assessed. RESULTS: The most prevalent toxin was DON, which was found in 83% of samples (maximum level 180 µg kg(-1)), while HT-2 was detected in 62% of samples (maximum level 716 µg kg(-1)). Using analysis of covariance, weather was found to be the key factor in all years (P < 0.001). A relationship between cultivar and contamination was confirmed only for HT-2 (P < 0.001) and T-2 (P = 0.037), with higher levels of these toxins being observed in hulless cultivars. With the exception of NIV (P = 0.008), no significant relationship was found between fungicide treatment and contamination. No distinct trend regarding DON levels in malt was found, with both decreases and increases occurring. CONCLUSION: The results show an inter-annual variation in mycotoxin occurrence in barley cultivars as well as differences in contamination of malt produced from fungicide-treated and untreated barley.
- MeSH
- analýza rozptylu MeSH
- druhová specificita MeSH
- fungicidy průmyslové farmakologie MeSH
- Fusarium chemie MeSH
- ječmen (rod) klasifikace mikrobiologie MeSH
- jedlá semena mikrobiologie MeSH
- mykotoxiny analýza MeSH
- počasí MeSH
- potravinářská mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The fate of five Fusarium toxins--deoxynivalenol (DON), sum of 15- and 3-acetyl-deoxynivalenol (ADONs), HT-2 toxin (HT-2) representing the main trichothecenes and zearalenone (ZON) during the malting and brewing processes--was investigated. In addition to these 'free' mycotoxins, the occurrence of deoxynivalenol-3-glucoside (DON-3-Glc) was monitored for the first time in a beer production chain (currently, only DON and ZON are regulated). Two batches of barley, naturally infected and artificially inoculated with Fusarium spp. during the time of flowering, were used as a raw material for processing experiments. A highly sensitive procedure employing high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was validated for the analysis of 'free' Fusarium mycotoxins and DON-conjugate in all types of matrices. The method was also able to detect nivalenol (NIV), fusarenon-X (FUS-X) and T-2 toxin (T-2); nevertheless, none of these toxins was found in any of the samples. While steeping of barley grains (the first step in the malting process) apparently reduced Fusarium mycotoxin levels to below their quantification limits (5-10 microg kg(-1)), their successive accumulation occurred during germination. In malt, the content of monitored mycotoxins was higher compared with the original barley. The most significant increase was found for DON-3-Glc. During the brewing process, significant further increases in levels occurred. Concentrations of this 'masked' DON in final beers exceeded 'free' DON, while in malt grists this trichothecene was the most abundant, with the DON/DON-3-Glc ratio being approximately 5:1 in both sample series. When calculating mass balance, no significant changes were observed during brewing for ADONs. The content of DON and ZON slightly decreased by a maximum of 30%. Only traces of HT-2 were detected in some processing intermediates (wort after trub removal and green beer).
- MeSH
- chemie farmaceutická MeSH
- cyklické peptidy analýza chemie MeSH
- Fusarium chemie MeSH
- neuropeptidy MeSH
- Publikační typ
- kongresy MeSH