"00023736" Dotaz Zobrazit nápovědu
Membrane transporters are important determinants of drug bioavailability. Their expression and activity affect the intracellular drug concentration in leukemic cells impacting response to therapy. Pharmacogenomics represents genetic markers that reflect allele arrangement of genes encoding drug transporters associated with treatment response. In previous work, we identified SNP rs460089 located in the promotor of SLC22A4 gene encoding imatinib transporter OCTN1 as influential on response of patients with chronic myeloid leukemia treated with imatinib. Patients with rs460089-GC pharmacogenotype had significantly superior response to first-line imatinib treatment compared to patients with rs460089-GG. This study investigated whether pharmacogenotypes of rs460089 are associated with sustainability of treatment-free remission (TFR) in patients from the EUROpean Stop Kinase Inhibitor (EURO-SKI) trial. In the learning sample, 176 patients showed a significantly higher 6-month probability of molecular relapse free survival (MRFS) in patients with GC genotype (73%, 95% CI: 60-82%) compared to patients with GG (51%, 95% CI: 41-61%). Also over time, patients with GC genotype had significantly higher MRFS probabilities compared with patients with GG (HR: 0.474, 95% CI: 0.280-0.802, p = 0.0054). Both results were validated with data on 93 patients from the Polish STOP imatinib study. In multiple regression models, in addition to the investigated genotype, duration of TKI therapy (EURO-SKI trial) and duration of deep molecular response (Polish study) were identified as independent prognostic factors. The SNP rs460089 was found as an independent predictor of TFR.
- MeSH
- antitumorózní látky * škodlivé účinky MeSH
- chronická myeloidní leukemie * farmakoterapie genetika MeSH
- imatinib mesylát terapeutické užití MeSH
- inhibitory proteinkinas terapeutické užití MeSH
- lidé MeSH
- membránové transportní proteiny terapeutické užití MeSH
- prognóza MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Calcineurin-nuclear factor of activated T cells (CN-NFAT) inhibitors are widely clinically used drugs for immunosuppression, but besides their required T cell response inhibition, they also undesirably affect innate immune cells. Disruption of innate immune cell function can explain the observed susceptibility of CN-NFAT inhibitor-treated patients to opportunistic fungal infections. Neutrophils play an essential role in innate immunity as a defense against pathogens; however, the effect of CN-NFAT inhibitors on neutrophil function was poorly described. Thus, we tested the response of human neutrophils to opportunistic fungal pathogens, namely Candida albicans and Aspergillus fumigatus, in the presence of CN-NFAT inhibitors. Here, we report that the NFAT pathway members were expressed in neutrophils and mediated part of the neutrophil response to pathogens. Upon pathogen exposure, neutrophils underwent profound transcriptomic changes with subsequent production of effector molecules. Importantly, genes and proteins involved in the regulation of the immune response and chemotaxis, including the chemokines CCL2, CCL3, and CCL4 were significantly upregulated. The presence of CN-NFAT inhibitors attenuated the expression of these chemokines and impaired the ability of neutrophils to chemoattract other immune cells. Our results amend knowledge about the impact of CN-NFAT inhibition in human neutrophils.
- MeSH
- Aspergillus fumigatus imunologie MeSH
- Candida albicans imunologie MeSH
- chemotaxe MeSH
- kalcineurin * metabolismus MeSH
- lidé MeSH
- mykózy imunologie MeSH
- neutrofily * imunologie metabolismus MeSH
- signální transdukce * MeSH
- transkripční faktory NFATC * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The p21-activated kinase (PAK) family of proteins regulates various processes requiring dynamic cytoskeleton organization such as cell adhesion, migration, proliferation, and apoptosis. Among the six members of the protein family, PAK2 is specifically involved in apoptosis, angiogenesis, or the development of endothelial cells. We report a novel de novo heterozygous missense PAK2 variant, p.(Thr406Met), found in a newborn with clinical manifestations of Knobloch syndrome. In vitro experiments indicated that this and another reported variant, p.(Asp425Asn), result in substantially impaired protein kinase activity. Similar findings were described previously for the PAK2 p.(Glu435Lys) variant found in two siblings with proposed Knobloch syndrome type 2 (KNO2). These new variants support the association of PAK2 kinase deficiency with a second, autosomal dominant form of Knobloch syndrome: KNO2.
- MeSH
- degenerace retiny genetika patologie MeSH
- encefalokéla MeSH
- lidé MeSH
- missense mutace genetika MeSH
- novorozenec MeSH
- odchlípení sítnice genetika patologie vrozené MeSH
- p21 aktivované kinasy * genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
Clinical experience with tyrosine kinase inhibitors (TKIs) over the past two decades has shown that, despite the apparent therapeutic benefit, nearly 30% of patients with chronic myelogenous leukemia (CML) display primary resistance or intolerance to TKIs, and approximately 25% of those treated are forced to switch TKIs at least once during therapy due to acquired resistance. Safe and effective treatment modalities targeting leukemic clones that escape TKI therapy could hence be game changers in the professional management of these patients. Here, we aimed to investigate the efficacy of a novel therapeutic oligonucleotide of unconventional design, called ASP210, to reduce BCR-ABL1 mRNA levels in TKI-resistant CML cells, with the assumption of inducing their apoptosis. Imatinib- and dasatinib-resistant sublines of BCR-ABL1-positive MOLM-7 and CML-T1 cells were established and exposed to 0.25 and 2.5 μM ASP210 for 10 days. RT-qPCR showed a remarkable reduction of the target mRNA level by >99% after a single application. Cell viability was monitored daily by trypan blue staining. In response to the lack of driver oncoprotein BCR-ABL1, TKI-resistant CML cells underwent apoptosis regardless of the presence of the clinically relevant T315I mutation by day 5 after redosing with ASP210. The effect was selective for cancer cells, indicating a favorable safety profile for this therapeutic modality. Furthermore, the spontaneous uptake and high intracellular concentrations of ASP210 suggest its potential to be effective at relatively low doses. The present findings suggest that ASP210 is a promising therapeutic avenue for patients with CML who fail to respond to TKI therapy.NEW & NOTEWORTHY Effective treatment modalities targeting leukemic clones that escape tyrosine kinase inhibitor (TKI) therapy could be game changers in the professional management of patients displaying primary resistance, intolerance, or acquired resistance to TKIs. Although delivering authentic innovations today is more complex than ever, we developed a highly potent and safe oligonucleotide-based modality against BCR-ABL1 mRNA named ASP210 that effectively induces cell death in BCR-ABL1-positive TKI-resistant cells while sparing BCR-ABL1-negative healthy cells.
- MeSH
- antitumorózní látky farmakologie MeSH
- apoptóza * účinky léků MeSH
- bcr-abl fúzové proteiny * genetika antagonisté a inhibitory metabolismus MeSH
- chemorezistence * účinky léků MeSH
- chronická myeloidní leukemie * farmakoterapie genetika patologie MeSH
- dasatinib farmakologie MeSH
- imatinib mesylát * farmakologie terapeutické užití MeSH
- inhibitory proteinkinas * farmakologie MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- oligonukleotidy * farmakologie MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- bcr-abl fúzové proteiny genetika MeSH
- blastická krize * genetika farmakoterapie patologie MeSH
- chronická myeloidní leukemie * farmakoterapie genetika patologie MeSH
- imidazoly * terapeutické užití aplikace a dávkování MeSH
- inhibitory proteinkinas terapeutické užití farmakologie MeSH
- lidé MeSH
- mutace * MeSH
- myši MeSH
- niacinamid analogy a deriváty MeSH
- protokoly antitumorózní kombinované chemoterapie terapeutické užití MeSH
- pyrazoly MeSH
- pyridaziny * terapeutické užití aplikace a dávkování MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- dopisy MeSH
Multiple sclerosis is a debilitating autoimmune disease, characterized by chronic inflammation of the central nervous system. While the significance of the gut microbiome on multiple sclerosis pathogenesis is established, the underlining mechanisms are unknown. We found that serum levels of the microbial postbiotic tryptophan metabolite indole-3-carboxaldehyde (3-IAld) inversely correlated with disease duration in multiple sclerosis patients. Much like the host-derived tryptophan derivative L-Kynurenine, 3-IAld would bind and activate the Aryl hydrocarbon Receptor (AhR), which, in turn, controls endogenous tryptophan catabolic pathways. As a result, in peripheral lymph nodes, microbial 3-IAld, affected mast-cell tryptophan metabolism, forcing mast cells to produce serotonin via Tph1. We thus propose a protective role for AhR-mast-cell activation driven by the microbiome, whereby natural metabolites or postbiotics will have a physiological role in immune homeostasis and may act as therapeutic targets in autoimmune diseases.
Overall survival of patients classified according to the European LeukemiaNet 2020 classification. Chronic phase (CP), accelerated phase (AP), blast crisis (BC), low risk (LR), intermediate risk (IR), high risk (HR).
- MeSH
- blastická krize farmakoterapie MeSH
- chronická myeloidní leukemie * farmakoterapie MeSH
- inhibitory proteinkinas terapeutické užití MeSH
- inhibitory tyrosinkinasy * MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
Mutations in the splicing factor 3b subunit 1 (SF3B1) gene are frequent in myelodysplastic neoplasms (MDS). Because the splicing process is involved in the production of circular RNAs (circRNAs), we investigated the impact of SF3B1 mutations on circRNA processing. Using RNA sequencing, we measured circRNA expression in CD34+ bone marrow MDS cells. We defined circRNAs deregulated in a heterogeneous group of MDS patients and described increased circRNA formation in higher-risk MDS. We showed that the presence of SF3B1 mutations did not affect the global production of circRNAs; however, deregulation of specific circRNAs was observed. Particularly, we demonstrated that strong upregulation of circRNAs processed from the zinc finger E-box binding homeobox 1 (ZEB1) transcription factor; this upregulation was exclusive to SF3B1-mutated patients and was not observed in those with mutations in other splicing factors or other recurrently mutated genes, or with other clinical variables. Furthermore, we focused on the most upregulated ZEB1-circRNA, hsa_circ_0000228, and, by its knockdown, we demonstrated that its expression is related to mitochondrial activity. Using microRNA analyses, we proposed miR-1248 as a direct target of hsa_circ_0000228. To conclude, we demonstrated that mutated SF3B1 leads to deregulation of ZEB1-circRNAs, potentially contributing to the defects in mitochondrial metabolism observed in SF3B1-mutated MDS.
Around half of people with severe COVID-19 requiring intensive care unit (ICU) treatment will survive, but it is unclear how the immune response to SARS-CoV-2 differs between ICU patients that recover and those that do not. We conducted whole-blood immunophenotyping of COVID-19 patients upon admission to ICU and during their treatment and uncovered marked differences in their circulating immune cell subsets. At admission, patients who later succumbed to COVID-19 had significantly lower frequencies of all memory CD8+ T cell subsets, resulting in increased CD4-to-CD8 T cell and neutrophil-to-CD8 T cell ratios. ROC and Kaplan-Meier analyses demonstrated that both CD4-to-CD8 and neutrophil-to-CD8 ratios at admission were strong predictors of in-ICU mortality. Therefore, we propose the use of the CD4-to-CD8 T cell ratio as a marker for the early identification of those individuals likely to require enhanced monitoring and/or pro-active intervention in ICU.
- MeSH
- CD4-pozitivní T-lymfocyty imunologie MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- COVID-19 imunologie MeSH
- imunofenotypizace metody MeSH
- jednotky intenzivní péče MeSH
- lidé středního věku MeSH
- lidé MeSH
- počet lymfocytů metody MeSH
- poměr CD4 a CD8 lymfocytů metody MeSH
- prospektivní studie MeSH
- SARS-CoV-2 imunologie MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
BACKGROUND: Multiple studies have reported the prognostic impact of DNA methylation changes in acute myeloid leukemia (AML). However, these epigenetic markers have not been thoroughly validated and therefore are still not considered in clinical practice. Hence, we aimed to independently verify results of selected studies describing the relationship between DNA methylation of specific genes and their prognostic potential in predicting overall survival (OS) and event-free survival (EFS). RESULTS: Fourteen studies (published 2011-2019) comprising of 27 genes were subjected to validation by a custom NGS-based sequencing panel in 178 newly diagnosed non-M3 AML patients treated by 3 + 7 induction regimen. The results were considered as successfully validated, if both the log-rank test and multivariate Cox regression analysis had a p-value ≤ 0.05. The predictive role of DNA methylation was confirmed for three studies comprising of four genes: CEBPA (OS: p = 0.02; EFS: p = 0.03), PBX3 (EFS: p = 0.01), LZTS2 (OS: p = 0.05; EFS: p = 0.0003), and NR6A1 (OS: p = 0.004; EFS: p = 0.0003). For all of these genes, higher methylation was an indicator of longer survival. Concurrent higher methylation of both LZTS2 and NR6A1 was highly significant for survival in cytogenetically normal (CN) AML group (OS: p < 0.0001; EFS: p < 0.0001) as well as for the whole AML cohort (OS: p = 0.01; EFS < 0.0001). In contrast, for two studies reporting the poor prognostic effect of higher GPX3 and DLX4 methylation, we found the exact opposite, again linking higher GPX3 (OS: p = 0.006; EFS: p < 0.0001) and DLX4 (OS: p = 0.03; EFS = 0.03) methylation to a favorable treatment outcome. Individual gene significance levels refer to the outcomes of multivariate Cox regression analysis. CONCLUSIONS: Out of twenty-seven genes subjected to DNA methylation validation, a prognostic role was observed for six genes. Therefore, independent validation studies are necessary to reveal truly prognostic DNA methylation changes and to enable the introduction of these promising epigenetic markers into clinical practice.
- MeSH
- akutní myeloidní leukemie diagnóza genetika MeSH
- dospělí MeSH
- imunochemie metody statistika a číselné údaje MeSH
- lidé středního věku MeSH
- lidé MeSH
- metylace DNA genetika fyziologie MeSH
- nádorové biomarkery analýza genetika MeSH
- prognóza MeSH
- sekvenční analýza DNA metody statistika a číselné údaje MeSH
- transkripční faktory genetika MeSH
- validační studie jako téma MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH