"PROGRES Q26/LF1"
Dotaz
Zobrazit nápovědu
Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein with tyrosine-kinase signaling activity, involved in many cellular functions including cell growth and differentiation. Germ line loss-of-function mutations in EGFR lead to a severe neonatal skin disorder (Online Mendelian Inheritance in Man #131550). We report 18 premature Roma children from 16 families with birthweights ranging 440-1470 g and multisystem diseases due to the homozygous mutation c.1283G˃A (p.Gly428Asp) in EGFR. They presented with thin, translucent, fragile skin (14/15), skin desquamation (10/17), ichthyosis (9/17), recurrent skin infections and sepsis (9/12), nephromegaly (10/16) and congenital heart defects (7/17). Their prognosis was poor, and all died before the age of 6 months except one 13-year-old boy with a severe skin disorder, dentinogenesis imperfecta, Fanconi-like syndrome and secondary hyperaldosteronism. Management of ion and water imbalances and extremely demanding skin care may improve the unfavorable outcome of such patients.
- MeSH
- dentinogenesis imperfecta diagnóza genetika mortalita MeSH
- dítě MeSH
- erbB receptory nedostatek genetika MeSH
- homozygot MeSH
- ichtyóza diagnóza genetika mortalita MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mutace ztráty funkce MeSH
- nemoci ledvin vrozené diagnóza genetika mortalita MeSH
- novorozenec nedonošený MeSH
- novorozenec s velmi nízkou porodní hmotností MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- Romové genetika MeSH
- sekvenování exomu MeSH
- stupeň závažnosti nemoci MeSH
- syndrom MeSH
- vrozené srdeční vady diagnóza genetika mortalita MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- Geografické názvy
- Česká republika MeSH
- Slovenská republika MeSH
AIMS: Recent-onset dilated cardiomyopathy (RODCM) is characterized by heterogeneous aetiology and diverse clinical outcomes, with scarce data on genotype-phenotype correlates. Our aim was to correlate individual RODCM genotypes with left ventricular reverse remodelling (LVRR) and clinical outcomes. METHODS AND RESULTS: In this prospective study, a total of 386 Czech RODCM patients with symptom duration ≤6 months underwent genetic counselling and whole-exome sequencing (WES). The presence of pathogenic (class 5) or likely pathogenic (class 4) variants in a set of 72 cardiomyopathy-related genes was correlated with the occurrence of all-cause death, heart transplantation, or implantation of a ventricular assist device (primary outcome) and/or ventricular arrhythmia event (secondary outcome). LVRR was defined as an improvement of left ventricular ejection fraction to >50% or ≥10% absolute increase, with a left ventricular end-diastolic diameter ≤33 mm/m2 or ≥10% relative decrease. Median follow-up was 41 months. RODCM was familial in 98 (25%) individuals. Class 4-5 variants of interest (VOIs) were identified in 125 (32%) cases, with 69 (18%) having a single titin-truncating variant (TTNtv) and 56 (14%) having non-titin (non-TTN) VOIs. The presence of class 4-5 non-TTN VOIs, but not of TTNtv, heralded a lower probability of 12-month LVRR and proved to be an independent baseline predictor both of the primary and the secondary outcome. The negative result of genetic testing was a strong protective baseline variable against occurrence of life-threatening ventricular arrhythmias. Detection of class 4-5 VOIs in genes coding nuclear envelope proteins was another independent predictor of both study outcomes at baseline and also of life-threatening ventricular arrhythmias after 12 months. Class 4-5 VOIs of genes coding cytoskeleton were associated with an increased risk of life-threatening ventricular arrhythmias after baseline assessment. A positive family history of dilated cardiomyopathy alone only related to a lower probability of LVRR at 12 months and at the final follow-up. CONCLUSIONS: RODCM patients harbouring class 4-5 non-TTN VOIs are at higher risk of progressive heart failure and life-threatening ventricular arrhythmias. Genotyping may improve their early risk stratification at baseline assessment.
- MeSH
- dilatační kardiomyopatie * genetika patofyziologie MeSH
- dospělí MeSH
- funkce levé komory srdeční fyziologie MeSH
- genotyp * MeSH
- lidé středního věku MeSH
- lidé MeSH
- následné studie MeSH
- prospektivní studie MeSH
- remodelace komor * genetika fyziologie MeSH
- sekvenování exomu MeSH
- tepový objem fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Non-Hodgkin lymphomas (NHL) are lymphoid tumors that arise by a complex process of malignant transformation of mature lymphocytes during various stages of differentiation. The WHO classification of NHL recognizes more than 90 nosological units with peculiar pathophysiology and prognosis. Since the end of the 20th century, our increasing knowledge of the molecular biology of lymphoma subtypes led to the identification of novel druggable targets and subsequent testing and clinical approval of novel anti-lymphoma agents, which translated into significant improvement of patients' outcome. Despite immense progress, our effort to control or even eradicate malignant lymphoma clones has been frequently hampered by the development of drug resistance with ensuing unmet medical need to cope with relapsed or treatment-refractory disease. A better understanding of the molecular mechanisms that underlie inherent or acquired drug resistance might lead to the design of more effective front-line treatment algorithms based on reliable predictive markers or personalized salvage therapy, tailored to overcome resistant clones, by targeting weak spots of lymphoma cells resistant to previous line(s) of therapy. This review focuses on the history and recent advances in our understanding of molecular mechanisms of resistance to genotoxic and targeted agents used in clinical practice for the therapy of NHL.
- MeSH
- chemorezistence * MeSH
- individualizovaná medicína MeSH
- lidé MeSH
- nádorové biomarkery metabolismus MeSH
- nehodgkinský lymfom * klasifikace metabolismus patologie terapie MeSH
- protinádorové látky škodlivé účinky terapeutické užití MeSH
- záchranná terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
PURPOSE: The aim of the study was to describe the phenotype and molecular genetic causes of X-linked megalocornea (MGC1). We recruited four British, one New Zealand, one Vietnamese and four Czech families. METHODS: All probands and three female carriers underwent ocular examination and Sanger sequencing of the CHRDL1 gene. Two of the probands also had magnetic resonance imaging (MRI) of the brain. RESULTS: We identified nine pathogenic or likely pathogenic and one variant of uncertain significance in CHRDL1, of which eight are novel. Three probands had ocular findings that have not previously been associated with MGC1, namely pigmentary glaucoma, unilateral posterior corneal vesicles, unilateral keratoconus and unilateral Fuchs heterochromic iridocyclitis. The corneal diameters of the three heterozygous carriers were normal, but two had abnormally thin corneas, and one of these was also diagnosed with unilateral keratoconus. Brain MRI identified arachnoid cysts in both probands, one also had a neuroepithelial cyst, while the second had a midsagittal neurodevelopmental abnormality (cavum septum pellucidum et vergae). CONCLUSION: The study expands the spectrum of pathogenic variants and the ocular and brain abnormalities that have been identified in individuals with MGC1. Reduced corneal thickness may represent a mild phenotypic feature in some heterozygous female carriers of CHRDL1 pathogenic variants.
- MeSH
- dědičné nemoci očí * diagnóza MeSH
- fenotyp MeSH
- genetické nemoci vázané na chromozom X * diagnóza genetika MeSH
- keratokonus * MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Antineutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) represents an autoimmunity disease characterized by high mortality. For successful treatment, the detailed knowledge of its complex pathogenesis and the set of biomarkers for differential diagnostics are desired. Analysis of molecular content of small urinary extracellular vesicles (uEV) offers the possibility to find markers in the form of microRNAs (miRNAs) and study the pathways involved in pathogenesis. We used next-generation sequencing in the first preliminary study to detect the miRNAs with altered expression in uEVs of patients with AAV in comparison with age-matched controls. We confirmed the results using single-target quantitative polymerase chain reaction tests on different sets of samples and found five miRNAs (miR-30a-5p, miR-31-3p, miR-99a-5p, miR-106b-5p, miR-182-5p) with highly elevated levels in uEVs of patients. We performed the comparison of their targets with the differentially expressed proteins in uEVs of patients included in the first phase. We realized that upregulated miRNAs and proteins in uEVs in AAV patients target different biological pathways. The only overlap was detected in pathways regulating the actin cytoskeleton assembly and thus potentially affecting the glomerular functions. The associations of upregulated miRNAs with pathways that were neglected as components of complex AAV pathogenesis, e.g., the epidermal growth factor receptor signaling pathway, were found.
- MeSH
- ANCA-asociované vaskulitidy * genetika MeSH
- biologické markery MeSH
- extracelulární vezikuly * genetika MeSH
- ledviny MeSH
- lidé MeSH
- mikro RNA * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Mantle cell lymphoma (MCL) is a subtype of B-cell lymphoma with a large number of recurrent cytogenetic/molecular aberrations. Approximately 5-10% of patients do not respond to frontline immunochemotherapy. Despite many useful prognostic indexes, a reliable marker of chemoresistance is not available. We evaluated the prognostic impact of seven recurrent gene aberrations including tumor suppressor protein P53 (TP53) and cyclin dependent kinase inhibitor 2A (CDKN2A) in the cohort of 126 newly diagnosed consecutive MCL patients with bone marrow involvement ≥5% using fluorescent in-situ hybridization (FISH) and next-generation sequencing (NGS). In contrast to TP53, no pathologic mutations of CDKN2A were detected by NGS. CDKN2A deletions were found exclusively in the context of other gene aberrations suggesting it represents a later event (after translocation t(11;14) and aberrations of TP53, or ataxia telangiectasia mutated (ATM)). Concurrent deletion of CDKN2A and aberration of TP53 (deletion and/or mutation) represented the most significant predictor of short EFS (median 3 months) and OS (median 10 months). Concurrent aberration of TP53 and CDKN2A is a new, simple, and relevant index of chemoresistance in MCL. Patients with concurrent aberration of TP53 and CDKN2A should be offered innovative anti-lymphoma therapy and upfront consolidation with allogeneic stem cell transplantation.
- Publikační typ
- časopisecké články MeSH
The ability to inhibit mitochondrial apoptosis is a hallmark of B-cell non-Hodgkin lymphomas (B-NHL). Activation of mitochondrial apoptosis is tightly controlled by members of B-cell leukemia/lymphoma-2 (BCL-2) family proteins via protein-protein interactions. Altering the balance between anti-apoptotic and pro-apoptotic BCL-2 proteins leads to apoptosis evasion and extended survival of malignant cells. The pro-survival BCL-2 proteins: B-cell leukemia/lymphoma-2 (BCL-2/BCL2), myeloid cell leukemia-1 (MCL-1/MCL1) and B-cell lymphoma-extra large (BCL-XL/BCL2L1) are frequently (over)expressed in B-NHL, which plays a crucial role in lymphoma pathogenesis, disease progression, and drug resistance. The efforts to develop inhibitors of anti-apoptotic BCL-2 proteins have been underway for several decades and molecules targeting anti-apoptotic BCL-2 proteins are in various stages of clinical testing. Venetoclax is a highly specific BCL-2 inhibitor, which has been approved by the US Food and Drug Agency (FDA) for the treatment of patients with chronic lymphocytic leukemia (CLL) and is in advanced clinical testing in other types of B-NHL. In this review, we summarize the biology of BCL-2 proteins and the mechanisms of how these proteins are deregulated in distinct B-NHL subtypes. We describe the mechanism of action of BH3-mimetics and the status of their clinical development in B-NHL. Finally, we summarize the mechanisms of sensitivity/resistance to venetoclax.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Tay-Sachs disease (TSD) is an inherited neurodegenerative disorder caused by a lysosomal β-hexosaminidase A deficiency due to mutations in the HEXA gene. The late-onset form of disease (LOTS) is considered rare, and only a limited number of cases have been reported. The clinical course of LOTS differs substantially from classic infantile TSD. METHODS: Comprehensive data from 14 Czech patients with LOTS were collated, including results of enzyme assays and genetic analyses. RESULTS: 14 patients (9 females, 5 males) with LOTS were diagnosed between 2002 and 2018 in the Czech Republic (a calculated birth prevalence of 1 per 325,175 live births). The median age of first symptoms was 21 years (range 10-33 years), and the median diagnostic delay was 10.5 years (range 0-29 years). The main clinical symptoms at the time of manifestation were stammering or slurred speech, proximal weakness of the lower extremities due to anterior horn cell neuronopathy, signs of neo- and paleocerebellar dysfunction and/or psychiatric disorders. Cerebellar atrophy detected through brain MRI was a common finding. Residual enzyme activity was 1.8-4.1% of controls. All patients carried the typical LOTS-associated c.805G>A (p.Gly269Ser) mutation on at least one allele, while a novel point mutation, c.754C>T (p.Arg252Cys) was found in two siblings. CONCLUSION: LOTS seems to be an underdiagnosed cause of progressive distal motor neuron disease, with variably expressed cerebellar impairment and psychiatric symptomatology in our group of adolescent and adult patients. The enzyme assay of β-hexosaminidase A in serum/plasma is a rapid and reliable tool to verify clinical suspicions.
- MeSH
- dospělí MeSH
- duševní poruchy diagnostické zobrazování epidemiologie psychologie MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozeček diagnostické zobrazování MeSH
- svalová atrofie diagnostické zobrazování epidemiologie psychologie MeSH
- Tay-Sachsova nemoc diagnostické zobrazování epidemiologie psychologie MeSH
- věk při počátku nemoci MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Hypoxia represents one of the key factors that stimulates the growth of leukemic cells in their niche. Leukemic cells in hypoxic conditions are forced to reprogram their original transcriptome, miRNome, and metabolome. How the coupling of microRNAs (miRNAs)/mRNAs helps to maintain or progress the leukemic status is still not fully described. MiRNAs regulate practically all biological processes within cells and play a crucial role in the development/progression of leukemia. In the present study, we aimed to uncover the impact of hsa-miR-155-5p (miR-155, MIR155HG) on the metabolism, proliferation, and mRNA/miRNA network of human chronic lymphocytic leukemia cells (CLL) in hypoxic conditions. As a model of CLL, we used the human MEC-1 cell line where we deleted mature miR-155 with CRISPR/Cas9. We determined that miR-155 deficiency in leukemic MEC-1 cells results in lower proliferation even in hypoxic conditions in comparison to MEC-1 control cells. Additionally, in MEC-1 miR-155 deficient cells we observed decreased number of populations of cells in S phase. The miR-155 deficiency under hypoxic conditions was accompanied by an increased apoptosis. We detected a stimulatory effect of miR-155 deficiency and hypoxia at the level of gene expression, seen in significant overexpression of EGLN1, GLUT1, GLUT3 in MEC-1 miR-155 deficient cells. MiR-155 deficiency and hypoxia resulted in increase of glucose and lactate uptake. Pyruvate, ETC and ATP were reduced. To conclude, miR-155 deficiency and hypoxia affects glucose and lactate metabolism by stimulating the expression of glucose transporters as GLUT1, GLUT3, and EGLN1 [Hypoxia-inducible factor prolyl hydroxylase 2 (HIF-PH2)] genes in the MEC-1 cells.
- Publikační typ
- časopisecké články MeSH
Three genetically determined enzyme defects of purine de novo synthesis (PDNS) have been identified so far in humans: adenylosuccinate lyase (ADSL) deficiency, 5-amino-4-imidazole carboxamide-ribosiduria (AICA-ribosiduria), and deficiency in bifunctional enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS). Clinical signs of these defects are mainly neurological, such as seizures, psychomotor retardation, epilepsy, autistic features, etc. This work aims to describe the metabolic changes of CRISPR-Cas9 genome-edited HeLa cells deficient in the individual steps of PDNS to better understand known and potential defects of the pathway in humans. High-performance liquid chromatography coupled with mass spectrometry was used for both targeted and untargeted metabolomic analyses. The statistically significant features from the untargeted study were identified by fragmentation analysis. Data from the targeted analysis were processed in Cytoscape software to visualize the most affected metabolic pathways. Statistical significance of PDNS intermediates preceding deficient enzymes was the highest (p-values 10 × 10-7-10 × 10-15) in comparison with the metabolites from other pathways (p-values of up to 10 × 10-7). Disturbed PDNS resulted in an altered pool of adenine and guanine nucleotides. However, the adenylate energy charge was not different from controls. Different profiles of acylcarnitines observed among deficient cell lines might be associated with a specific enzyme deficiency rather than global changes related to the PDNS pathway. Changes detected in one-carbon metabolism might reduce the methylation activity of the deficient cells, thus affecting the modification state of DNA, RNA, and proteins.
- Publikační typ
- časopisecké články MeSH