Agrobacterium tumefaciens
Dotaz
Zobrazit nápovědu
- MeSH
- Agrobacterium tumefaciens patogenita MeSH
- dospělí MeSH
- horečka etiologie MeSH
- imunosupresivní léčba MeSH
- lidé středního věku MeSH
- lidé MeSH
- mnohočetný myelom komplikace mikrobiologie MeSH
- vény chirurgie mikrobiologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
- MeSH
- Agrobacterium tumefaciens patogenita MeSH
- dospělí MeSH
- lidé MeSH
- spondylitida patologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
Agrobacterium tumefaciens is widely used as a versatile tool for development of stably transformed model plants and crops. However, the development of Agrobacterium based transient plant transformation methods attracted substantial attention in recent years. Transient transformation methods offer several applications advancing stable transformations such as rapid and scalable recombinant protein production and in planta functional genomics studies. Herein, we highlight Agrobacterium and plant genetics factors affecting transfer of T-DNA from Agrobacterium into the plant cell nucleus and subsequent transient transgene expression. We also review recent methods concerning Agrobacterium mediated transient transformation of model plants and crops and outline key physical, physiological and genetic factors leading to their successful establishment. Of interest are especially Agrobacterium based reverse genetics studies in economically important crops relying on use of RNA interference (RNAi) or virus-induced gene silencing (VIGS) technology. The applications of Agrobacterium based transient plant transformation technology in biotech industry are presented in thorough detail. These involve production of recombinant proteins (plantibodies, vaccines and therapeutics) and effectoromics-assisted breeding of late blight resistance in potato. In addition, we also discuss biotechnological potential of recombinant GFP technology and present own examples of successful Agrobacterium mediated transient plant transformations.
We report the biochemical characterization of a novel haloalkane dehalogenase, DatA, isolated from the plant pathogen Agrobacterium tumefaciens C58. DatA possesses a peculiar pair of halide-stabilizing residues, Asn-Tyr, which have not been reported to play this role in other known haloalkane dehalogenases. DatA has a number of other unique characteristics, including substrate-dependent and cooperative kinetics, a dimeric structure, and excellent enantioselectivity toward racemic mixtures of chiral brominated alkanes and esters.
- MeSH
- Agrobacterium tumefaciens enzymologie genetika metabolismus MeSH
- alkany metabolismus MeSH
- DNA bakterií chemie genetika MeSH
- estery metabolismus MeSH
- hydrolasy genetika izolace a purifikace metabolismus MeSH
- molekulární sekvence - údaje MeSH
- multimerizace proteinu MeSH
- rostliny mikrobiologie MeSH
- sekvenční analýza DNA MeSH
- stereoizomerie MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nanotechnology, new fascinating field of science, is bringing many application's options. However, it is necessary to understand their potential environmental risk and toxicity. Zinc selenide quantum dots (ZnSe QDs) are getting valuable due to wide industrial usage, mainly as cadmium free diodes or stabilizing ligand. Thanks to unique properties, they could also open the possibilities of application in the agriculture. Their effects on living organisms, including plants, are still unknown. Therefore, the attention of this work was given to antioxidant response of Arabidopsis thaliana to 100 and 250 μM ZnSe QDs foliar feeding. ZnSe QDs treatment had no statistically significant differences in morphology but led to increased antioxidant response in the leaves at the level of gene expression and production secondary antioxidant metabolites. Concurrently, analysis of growth properties of Agrobacterium tumefaciens was done. 250 μM ZnSe solution inhibited the Agrobacterium tumefaciens viability by 60%. This is the first mention about effect ZnSe QDs on the plants. Although QDs induced oxidative stress, the apply treatment dose of ZnSe QDs did not have significant toxic effect on the plants and even no morphological changes were observed. However, the same amount of ZnSe QD induced an inhibitory effect on Agrobacterium tumefaciens.
- MeSH
- Agrobacterium tumefaciens účinky léků růst a vývoj MeSH
- antioxidancia metabolismus MeSH
- Arabidopsis genetika růst a vývoj metabolismus MeSH
- exprese genu * MeSH
- kvantové tečky toxicita MeSH
- metabolomika * MeSH
- sloučeniny selenu aplikace a dávkování toxicita MeSH
- sloučeniny zinku aplikace a dávkování toxicita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Influence of saccharose in the presence or absence of polyethylene glycol (PEG), methyl jasmonate, and an inactivated bacterial culture of Agrobacterium tumefaciens in cultivation medium on morphology of Hypericum perforatum L. and production of hypericin and hyperforin was studied under in vitro conditions. Production of hypericin and hyperforin was influenced by the presence of different concentrations of saccharose (10-30 g L(-1)) in cultivation medium. Addition of PEG (1.25-5 g L(-1)) in the presence of saccharose (10-30 g L(-1)) increased production of hypericin and hyperforin in the H. perforatum in vitro culture. Synthesis of hypericin and hyperforin was unchanged or reduced for most of the experimental plants at higher contents of PEG (10 and 15 g L(-1)). Concentrations of hypericin and hyperforin in the H. perforatum were on the order 100 and 103 microg g(-1) of dry plant material, respectively. Production of hypericin and hyperforin was stimulated either in the presence of a chemical elicitor (methyl jasmonate) or an inactivated bacterial culture of A. tumefaciens. Morphological changes induced by the abovementioned substances were observed and described in detail. The obtained results will be applied in experimental botany and in the technology of H. perforatum cultivation for pharmaceutical applications.
- MeSH
- acetáty farmakologie MeSH
- Agrobacterium tumefaciens metabolismus MeSH
- cyklopentany farmakologie MeSH
- floroglucinol analogy a deriváty metabolismus MeSH
- můstkové bicyklické sloučeniny metabolismus MeSH
- oxylipiny MeSH
- perylen analogy a deriváty metabolismus MeSH
- polyethylenglykoly farmakologie MeSH
- sacharosa farmakologie MeSH
- semena rostlinná metabolismus růst a vývoj MeSH
- terpeny metabolismus MeSH
- třezalka metabolismus růst a vývoj MeSH