Infekční komplikace u pacientů s termickým traumatem představují i v dnešní době složitou problematiku, která zásadním způsobem zvyšuje morbiditu i mortalitu těžce popálených pacientů. V oblasti popálené plochy se nejčastěji setkáváme s kolonizací, potažmo infekcí různými kmeny Staphylococcus aureus. Vzhledem k silnému selekčnímu tlaku lokálně nebo systémově podávaných antimikrobiálních preparátů se u tohoto patogenu postupem času vyvinulo několik multirezistentních variant. Tato skutečnost vede ke snaze najít další účinné přípravky v boji proti těmto patogenním mikroorganismům. Jednou z nejslibnějších možností se jeví využití enzymů s antimikrobiální aktivitou, tzv. enzybiotik. Ač je tato skupina látek zkoumána již od druhé poloviny 20. století, až v dnešní době jsme díky technologickému pokroku velmi blízko tomu, aby se postupně etablovala v běžné klinické praxi.
Even today, infectious complications in patients with thermal injury represent a complex issue, which significantly increases the morbidity and mortality of severely burned patients. Colonization and infection in the burned area are most often caused by various strains of Staphylococcus aureus. Due to the strong selection pressure of topically or systemically administered antimicrobial preparations, several multiresistant variants have developed over time in this pathogen. This fact leads to efforts to find other effective preparations in the fight against pathogenic microorganisms. One of the most promising possibilities appears to be the use of enzymes with antimicrobial activity, so-called enzybiotics. Although this group of substances has been researched since the second half of the 20th century, thanks to technological progress, we are now very close to gradually establishing it in regular clinical practice.
- Keywords
- enzybiotika, infekce popálených ploch,
- MeSH
- Anti-Bacterial Agents pharmacology therapeutic use MeSH
- Bacterial Infections drug therapy MeSH
- Enzymes pharmacology MeSH
- Wound Infection * drug therapy complications MeSH
- Humans MeSH
- Burns * complications microbiology MeSH
- Staphylococcus aureus drug effects MeSH
- Check Tag
- Humans MeSH
Antibacterial antibiotic therapy has played an important role in the treatment of bacterial infections for almost a century. The increasing resistance of pathogenic bacteria to antibiotics leads to an attempt to use previously neglected antibacterial therapies. Here we provide information on the two recombinantly modified antistaphylococcal enzymes derived from lysostaphin (LYSSTAPH-S) and endolysin (LYSDERM-S) derived from kayvirus 812F1 whose target sites reside in the bacterial cell wall. LYSSTAPH-S showed a stable antimicrobial effect over 24-h testing, even in concentrations lower than 1 µg/mL across a wide variety of epidemiologically important sequence types (STs) of methicillin-resistant Staphylococcus aureus (MRSA), especially in the stationary phase of growth (status comparable to chronic infections). LYSDERM-S showed a less potent antimicrobial effect that lasted only a few hours at concentrations of 15 μg/mL and higher. Our data indicate that these antimicrobial enzymes could be of substantial help in the treatment of chronic MRSA wound infections.
- Publication type
- Journal Article MeSH
Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
nestr.
Infection of the skin and soft tissues is the most common infectious complications not only in hospitalized patients but also treated outpatient settings. Treatment with local and systemic antimicrobials today is increasingly failing. The dominant cause is the increase in resistance of potentially pathogenic microorganisms to various antimicrobial strategies. Enzybiotics represent a promising group of proteins that may have the ambition to firmly established itself among antimicrobial drugs. The reason is their ability to efficiently split the cell wall of bacteria and the absence of resistant mechanisms to the effect of enzybiotics. During the project we will extend the understanding of the interaction between "biobetter" rLysdermF1, rLysstafS1 and LysbiofP1 lytic enzymes (enzybiotics) and Staphylococcus aureus MRSA gram-positive bacteria resistant to methicillin in laboratory conditions as well as in animal models in simulated skin and soft tissue infections using a skin collagen and cellulosic nanofibers. The main ambition of the project is to prepare the "biobetter" enzybiotics themselves and immobilize them on the skin cover as appropriate forms of use in human medicine in the real situations.
Infekce kůže a měkkých tkání je nejčastější infekční komplikací nejen u hospitalizovaných pacientů, ale také u pacientů léčených v ambulantní sféře. Terapie pomocí lokálních i systémových antimikrobiálních preparátů dnes stále častěji selhává. Dominantní příčinou je nárůst rezistence potenciálně patogenních mikroorganismů vůči nejrůznějším antimikrobiálním strategiím. Enzybiotika představují nadějnou skupinu proteinů, které mohou mít ambici se pevně etablovat mezi antimikrobiální preparáty. Důvodem je jejich schopnost účinně štěpit buněčnou stěnu bakterií a absence rezistentních mechanismů k účinku enzybiotika. V průběhu tohoto projektu budeme posouvat poznání interakce mezi "vylepšenými" lytickými enzymy rLysderm, rLysstaf a Lysbiof (enzybiotika) a kmeny grampozitivní bakterie Staphylococcus aureus jak v laboratorních podmínkách, tak také na animálním modelu v simulované infekci kůže a měkkých tkání za použití kožního krytu tvořeného kolagenem a celulosových nanovláken. Hlavní ambicí projektu bude příprava samotných "vylepšených" enzybiotik a jejich imobilizace na kožní kryt jako vhodné formy použití v humánní medicíně za reálných podmínek.
- Keywords
- MRSA, MRSA, enzymová terapie, S. aureus, enzyme therapy, S. aureus, enzybiotika, vylepšené enzymy, krycí materiály, enzybiotics, biobetters, wound dressing,
- NML Publication type
- závěrečné zprávy o řešení grantu AZV MZ ČR
Zánětlivá onemocnění kůže a měkkých tkání představují významnou skupinu infekcí člověka. Jejich nejčastějšími původci jsou bakterie Staphylococcus aureus a Streptococcus pyogenes. S ohledem na pokračující růst antibiotické rezistence těchto patogenů se aktuální výzkum zaměřuje na hledání nových látek účinných na infekce, u nichž selhává konvenční antimikrobní terapie. Slibnou v tomto smyslu je léčba založená na antibakteriálním účinku enzymatických preparátů (tzv. enzybiotik), které degradují bakteriální buněčnou stěnu. Tyto látky působí specificky na daný patogen, nikoliv však na kožní mikrobiom, což příznivě ovlivňuje léčebný proces. Enzymy mohou být špatně rozpustné, nestabilní nebo se rychle eliminují z organismu, a proto je snaha o vytvoření tzv. "biobetters", enzymů s vylepšenými vlastnostmi. Důraz je také kladen na vývoj nových nosičů pro enzybiotika či krytů s hojivým efektem, do nichž jsou enzymy inkorporovány.
Inflammatory diseases of the skin and soft tissues are an important group of human infections. The most common causes are the bacteria Staphylococcus aureus and Streptococcus pyogenes. Given the growing resistance of these pathogens to antimicrobials, the current research focuses on the search for novel therapeutic options that would be effective against infections refractory to conventional antimicrobials. A promising alternative is the use of enzyme-based antimicrobials (enzybiotics) that degrade the bacterial cell wall. They target the specific pathogen but do not affect the skin microbiome, thus helping the healing process. As enzymes can be poorly soluble, unstable, or subject to rapid elimination from the body, efforts are made to create biobetters, i.e., enzymes with improved characteristics. Emphasis is also put on the development of novel enzybiotic carriers or wound healing dressings with integrated enzymes.
- Keywords
- enzybiotika, biobetters,
- MeSH
- Anti-Bacterial Agents therapeutic use MeSH
- Drug Resistance, Microbial MeSH
- Biocompatible Materials MeSH
- Enzyme Therapy * MeSH
- Wound Healing MeSH
- Soft Tissue Infections * drug therapy classification therapy MeSH
- Skin Diseases, Infectious * drug therapy classification therapy MeSH
- Humans MeSH
- Staphylococcus aureus pathogenicity drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
Bacteriophages represent a simple viral model of basic research with many possibilities for practical application. Due to their ability to infect and kill bacteria, their potential in the treatment of bacterial infection has been examined since their discovery. With advances in molecular biology and gene engineering, the phage application spectrum has been expanded to various medical and biotechnological fields. The construction of bacteriophages with an extended host range or longer viability in the mammalian bloodstream enhances their potential as an alternative to conventional antibiotic treatment. Insertion of active depolymerase genes to their genomes can enforce the biofilm disposal. They can also be engineered to transfer various compounds to the eukaryotic organisms and the bacterial culture, applicable for the vaccine, drug or gene delivery. Phage recombinant lytic enzymes can be applied as enzybiotics in medicine as well as in biotechnology for pathogen detection or programmed cell death in bacterial expression strains. Besides, modified bacteriophages with high specificity can be applied as bioprobes in detection tools to estimate the presence of pathogens in food industry, or utilized in the control of food-borne pathogens as part of the constructed phage-based biosorbents.
- MeSH
- Bacteria drug effects MeSH
- Bacterial Infections drug therapy MeSH
- Bacteriophages genetics MeSH
- Biofilms MeSH
- Biological Therapy * MeSH
- Biosensing Techniques MeSH
- Biotechnology methods MeSH
- Genetic Engineering MeSH
- Humans MeSH
- Food-Processing Industry MeSH
- Industrial Microbiology * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage-bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force-distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.
- MeSH
- Bacteriophages * MeSH
- Humans MeSH
- Microscopy, Atomic Force MeSH
- Surface Plasmon Resonance MeSH
- Staphylococcal Infections * MeSH
- Staphylococcus aureus MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH