Cíl: Zjistit míru metylací DNA vybraných genových promotorů u jednotlivých typů hyperplazie endometria ve srovnání s normální endometriální tkání. Soubor a metodika: Byla použita MS-MLPA (multiplex ligation-dependent probe amplification). Porovnáno bylo celkem 120 vzorků tkáně endometria; 40 vzorků s atypickou hyperplazií endometria, 40 vzorků s hyperplazií endometria bez atypií a 40 kontrolních vzorků tkáně zdravého endometria. Výsledky a závěry: Rozdíly v metylaci DNA mezi jednotlivými skupinami byly zjištěny v genech TWIST1, GATA4, MUS81 a NTRK1 (TWIST1: atypická hyperplazie 67,5 %, benigní hyperplazie 2,5 %, normální endometrium 22,5 %; p < 0,00001; GATA4: atypická hyperplazie 95,0 %, benigní hyperplazie 65,0 %, normální endometrium 22,5 %; p < 0,00001; MUS81: atypická hyperplazie 57,5 %, benigní hyperplazie 22,5 %, normální endo-metrium 5,0 %; p < 0,00001; NTRK1: atypická hyperplazie 65,0 %, benigní hyperplazie 27,5 %, normální endometrium 10 %; p < 0,00001). U genů TWIST1, GATA4, MUS81 a NTRK1 byla pozorována vyšší míra metylace u vzorků s atypickou hyperplazií endometria v porovnání se vzorky zdravého endometria a dále byla vyšší míra metylace pozorována u vzorků s atypickou hyperplazií endometria v porovnání se vzorky benigní hyperplazie endometria. Metylace DNA u tumor supresorových genů TWIST1, GATA4, MUS81 a NTRK1 se uplatňuje v patogenezi atypické hyperplazie endometria.
Objective: To investigate DNA methylation of specific tumor suppressor genes in endometrial hyperplasia compared to normal endometrial tissue. File and methodology: To search for epigenetic events, methylation-specific multiplex ligation-dependent probe amplification was employed to compare the methylation status of 40 tissue samples with atypical endometrial hyperplasia, 40 tissue samples with endometrial hyperplasia without atypia, and 40 control tissue samples with a normal endometrium. Results and conclusion: Differences in DNA methylation among the groups were found in TWIST1, GATA4, MUS81, and NTRK1 genes (TWIST1: atypical hyperplasia 67.5%, benign hyperplasia 2.5%, normal endometrium 22.5%; P < 0.00001; GATA4: atypical hyperplasia 95%, benign hyperplasia 65%, normal endometrium 22.5%; P < 0.00001; MUS81: atypical hyperplasia 57.5%, benign hyperplasia 22.5%, normal endometrium 5%; P < 0.00001; NTRK1: atypical hyperplasia 65%, benign hyperplasia 27.5%, normal endometrium 10%; P < 0.00001). Higher methylation rates were observed for the tumor suppressor genes of TWIST1, GATA4, MUS81, and NTRK1 in samples with atypical endometrial hyperplasia compared to samples with normal endometrial tissue, and higher methylation rates were found in samples with atypical endometrial hyperplasia compared to samples of benign endometrial hyperplasia. DNA methylation of TWIST1, GATA4, MUS81, and NTRK1 is involved in the pathogenesis of atypical endometrial hyperplasia.
- MeSH
- DNA-Binding Proteins genetics MeSH
- Endonucleases genetics MeSH
- Endometrial Hyperplasia * genetics metabolism pathology MeSH
- Nuclear Proteins genetics MeSH
- Clinical Studies as Topic MeSH
- Humans MeSH
- DNA Methylation MeSH
- Receptor, trkA genetics MeSH
- GATA4 Transcription Factor genetics metabolism MeSH
- Twist-Related Protein 1 genetics MeSH
- Genes, Tumor Suppressor MeSH
- Check Tag
- Humans MeSH
- Female MeSH
Successful navigation of the mouse preimplantation stages of development, during which three distinct blastocyst lineages are derived, represents a prerequisite for continued development. We previously identified a role for p38-mitogen-activated kinases (p38-MAPK) regulating blastocyst inner cell mass (ICM) cell fate, specifically primitive endoderm (PrE) differentiation, that is intimately linked to rRNA precursor processing, polysome formation and protein translation regulation. Here, we develop this work by assaying the role of DEAD-box RNA helicase 21 (DDX21), a known regulator of rRNA processing, in the context of p38-MAPK regulation of preimplantation mouse embryo development. We show nuclear DDX21 protein is robustly expressed from the 16-cell stage, becoming exclusively nucleolar during blastocyst maturation, a localization dependent on active p38-MAPK. siRNA-mediated clonal Ddx21 knockdown within developing embryos is associated with profound cell-autonomous and non-autonomous proliferation defects and reduced blastocyst volume, by the equivalent peri-implantation blastocyst stage. Moreover, ICM residing Ddx21 knockdown clones express the EPI marker NANOG but rarely express the PrE differentiation marker GATA4. These data contribute further significance to the emerging importance of lineage-specific translation regulation, as identified for p38-MAPK, during mouse preimplantation development.
- MeSH
- Blastocyst cytology metabolism MeSH
- Cell Differentiation * genetics MeSH
- Cell Lineage genetics MeSH
- DEAD-box RNA Helicases genetics metabolism MeSH
- Embryonic Development * genetics MeSH
- Fluorescent Antibody Technique MeSH
- Gene Knockdown Techniques MeSH
- p38 Mitogen-Activated Protein Kinases metabolism MeSH
- Mice MeSH
- Signal Transduction MeSH
- Pregnancy MeSH
- Protein Transport MeSH
- Protein Binding MeSH
- Gene Expression Regulation, Developmental MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
12-O-Tetradecanoylphorbol-13-acetate (TPA) is the most widely used diacylglycerol (DAG) mimetic agent and inducer of protein kinase C (PKC)-mediated cellular response in biomedical studies. TPA has been proposed as a pluripotent cell differentiation factor, but results obtained have been inconsistent. In the present study we show that TPA can be applied as a cardiomyogenesis-promoting factor for the differentiation of mouse embryonic stem (mES) cells in vitro. The mechanism of TPA action is mediated by the induction of extracellular signal-regulated kinase (ERK) activity and the subsequent phosphorylation of GATA4 transcription factor. Interestingly, general mitogens (FGF, EGF, VEGF and serum) or canonical WNT signalling did not mimic the effect of TPA. Moreover, on the basis of our results, we postulate that a TPA-sensitive population of cardiac progenitor cells exists at a certain time point (after days 6-8 of the differentiation protocol) and that the proposed treatment can be used to increase the multiplication of ES cell-derived cardiomyocytes.
- MeSH
- Cell Differentiation drug effects MeSH
- Embryonic Stem Cells cytology drug effects metabolism MeSH
- Extracellular Signal-Regulated MAP Kinases metabolism MeSH
- Phosphorylation MeSH
- Myocytes, Cardiac cytology metabolism MeSH
- Mice MeSH
- Protein Kinase C metabolism MeSH
- Signal Transduction drug effects MeSH
- Tetradecanoylphorbol Acetate pharmacology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Background The lack of effective biomarkers for the screening and early detection of ovarian cancer (OC) is one of the most pressing problems in oncogynecology. Because epigenetic alterations occur early in the cancer development, they provide great potential to serve as such biomarkers. In our study, we investigated a potential of a four-gene methylation panel (including CDH13, HNF1B, PCDH17 and GATA4 genes) for the early detection of high-grade serous ovarian carcinoma (HGSOC). Methods For methylation detection we used methylation sensitive high-resolution melting analysis and real-time methylation specific analysis. We also investigated the relation between gene hypermethylation and gene relative expression using the 2-ΔΔCt method. Results The sensitivity of the examined panel reached 88.5%. We were able to detect methylation in 85.7% (12/14) of early stage tumors and in 89.4% (42/47) of late stage tumors. The total efficiency of the panel was 94.4% and negative predictive value reached 90.0%. The specificity and positive predictive value achieved 100% rates. Our results showed lower gene expression in the tumor samples in comparison to control samples. The more pronounced downregulation was measured in the group of samples with detected methylation. Conclusions In our study we designed the four-gene panel for HGSOC detection in ovarian tissue with 100% specificity and sensitivity of 88.5%. The next challenge is translation of the findings to the less invasive source for biomarker examination, such as plasma. Our results indicate that combination of examined genes deserve consideration for further testing in clinical molecular diagnosis of HGSOC.
- MeSH
- Early Detection of Cancer MeSH
- Humans MeSH
- DNA Methylation * MeSH
- Biomarkers, Tumor blood MeSH
- Ovarian Neoplasms blood diagnosis genetics MeSH
- Sensitivity and Specificity MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
DNA methylation is well-known to be associated with ovarian cancer (OC) and has great potential to serve as a biomarker in monitoring response to therapy and for disease screening. The purpose of this study was to investigate methylation of HNF1B and GATA4 and correlate detected methylation with clinicopathological characteristic of OC patients. The study group consisted of 64 patients with OC and 35 control patients. To determine the most important sites of HNF1B and GATA4, we used next-generation sequencing. For further confirmation of detected methylation of selected regions, we used high-resolution melting analysis and methylation-specific real-time polymerase chain reaction (PCR). Selected regions of HNF1B and GATA4 were completely methylation free in all control samples, whereas methylation-positive pattern was observed in 32.8% (HNF1B) and 45.3% (GATA4) of OC samples. Evaluating both genes together, we were able to detect methylation in 65.6% of OC patients. We observed a statistically significant difference in HNF1B methylation between samples with different stages of OC. We also detected subtype specific methylation in GATA4 and a decrease of methylation in late stages of OC. The combination of unmethylated HNF1B and methylated GATA4 was associated with longer overall survival. In our study, we employed innovative approach of methylation analysis of HNF1B and GATA4 to search for possible epigenetic biomarkers. We confirmed the significance of the HNF1B and GATA4 hypermethylation with emphasis on the need of selecting the most relevant sites for analysis. We suggest selected CpGs to be further examined as a potential positive prognostic factor.
- MeSH
- Adult MeSH
- Hepatocyte Nuclear Factor 1-beta genetics metabolism MeSH
- Kaplan-Meier Estimate MeSH
- Middle Aged MeSH
- Humans MeSH
- DNA Methylation * MeSH
- Biomarkers, Tumor * MeSH
- Ovarian Neoplasms diagnosis genetics metabolism mortality MeSH
- Follow-Up Studies MeSH
- Prognosis MeSH
- Promoter Regions, Genetic MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Aged MeSH
- Neoplasm Staging MeSH
- Neoplasm Grading MeSH
- GATA4 Transcription Factor genetics metabolism MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
AIMS: Ovarian cancer is the most lethal gynecological malignancy, with typically late diagnosis. Altered DNA methylation of tumor suppressor gene promoters probably plays a relevant role in ovarian carcinogenesis and frequently occurs as an early event in the development of different types of cancer including ovarian carcinoma. GATA4 methylation has been reported in a variety of human cancers. The aim of this study was to investigate promoter methylation of the GATA4 gene in ovarian cancer by comparison with that in normal ovarian tissue. METHODS: To search for promoter methylation of the GATA4 gene we used MSP (methylation-specific PCR) to compare the methylation status in 67 tissue samples of ovarian cancer with that in 40 control samples. RESULTS: In our study, methylation-specific PCR revealed GATA4 promoter methylation in 21 of 67 specimens with ovarian cancer (31.3%), and in none of the control ovarian tissue samples. CONCLUSION: These results confirm that methylation in the GATA4 promoter region could play an important role in ovarian carcinogenesis, and show new loci which are highly methylated only in ovarian cancer samples and which are associated predominantly with the endometrioid type of ovarian carcinoma.
- MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- DNA Methylation * MeSH
- Young Adult MeSH
- Neoplasms, Glandular and Epithelial genetics MeSH
- Ovarian Neoplasms genetics MeSH
- Promoter Regions, Genetic * MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- GATA4 Transcription Factor genetics MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Ovarian cancer is the leading cause of death from gynaecologic tumours, but the molecular and especially epigenetic events underlying the transformation are poorly understood. Various methylation changes have been identified and show promise as potential cancer biomarkers. The aim of this study was to investigate promoter methylation of selected tumour suppressor genes in ovarian cancer by comparison with normal ovarian tissue. To search for epigenetic events we used methylation-specific multiplex ligation-dependent probe amplification to compare the methylation status of 44 tissue samples of ovarian cancer with 30 control samples. Using a 20% cut-off for methylation, we observed significantly higher methylation in genes NTKR1, GATA4 and WIF1 in the ovarian cancer group compared with the control group. These findings could potentially be used in screening of ovarian cancer, and may have implications for future chemotherapy based on epigenetic changes.
- MeSH
- Adaptor Proteins, Signal Transducing genetics metabolism MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- DNA Methylation genetics MeSH
- Young Adult MeSH
- Tumor Suppressor Proteins genetics metabolism MeSH
- Ovarian Neoplasms genetics pathology MeSH
- Promoter Regions, Genetic * MeSH
- Receptor, trkA genetics metabolism MeSH
- Repressor Proteins genetics metabolism MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Case-Control Studies MeSH
- GATA4 Transcription Factor genetics metabolism MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- MeSH
- Anemia, Diamond-Blackfan etiology genetics MeSH
- DNA-Binding Proteins genetics MeSH
- Humans MeSH
- RNA, Messenger metabolism MeSH
- DNA Mutational Analysis MeSH
- GATA4 Transcription Factor MeSH
- Transcription Factors genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Letter MeSH
- Research Support, Non-U.S. Gov't MeSH