OBJECTIVES: The International Society for Bipolar Disorders Big Data Task Force assembled leading researchers in the field of bipolar disorder (BD), machine learning, and big data with extensive experience to evaluate the rationale of machine learning and big data analytics strategies for BD. METHOD: A task force was convened to examine and integrate findings from the scientific literature related to machine learning and big data based studies to clarify terminology and to describe challenges and potential applications in the field of BD. We also systematically searched PubMed, Embase, and Web of Science for articles published up to January 2019 that used machine learning in BD. RESULTS: The results suggested that big data analytics has the potential to provide risk calculators to aid in treatment decisions and predict clinical prognosis, including suicidality, for individual patients. This approach can advance diagnosis by enabling discovery of more relevant data-driven phenotypes, as well as by predicting transition to the disorder in high-risk unaffected subjects. We also discuss the most frequent challenges that big data analytics applications can face, such as heterogeneity, lack of external validation and replication of some studies, cost and non-stationary distribution of the data, and lack of appropriate funding. CONCLUSION: Machine learning-based studies, including atheoretical data-driven big data approaches, provide an opportunity to more accurately detect those who are at risk, parse-relevant phenotypes as well as inform treatment selection and prognosis. However, several methodological challenges need to be addressed in order to translate research findings to clinical settings.
- MeSH
- Big Data * MeSH
- Bipolar Disorder epidemiology therapy MeSH
- Data Science MeSH
- Phenotype MeSH
- Risk Assessment MeSH
- Clinical Decision-Making * MeSH
- Humans MeSH
- Advisory Committees MeSH
- Prognosis MeSH
- Suicidal Ideation * MeSH
- Machine Learning * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
1st ed 26, 91, 84, 57, 77, 77, 91, 61, 85, 42 s.
- Conspectus
- Veřejné zdraví a hygiena
- NML Fields
- environmentální vědy
- management, organizace a řízení zdravotnictví
BACKGROUND: Education and learning are the most important goals of all universities. For this purpose, lecturers use various tools to grab the attention of students and improve their learning ability. Virtual reality refers to the subjective sensory experience of being immersed in a computer-mediated world, and has recently been implemented in learning environments. OBJECTIVE: The aim of this study was to analyze the effect of a virtual reality condition on students' learning ability and physiological state. METHODS: Students were shown 6 sets of videos (3 videos in a two-dimensional condition and 3 videos in a three-dimensional condition), and their learning ability was analyzed based on a subsequent questionnaire. In addition, we analyzed the reaction of the brain and facial muscles of the students during both the two-dimensional and three-dimensional viewing conditions and used fractal theory to investigate their attention to the videos. RESULTS: The learning ability of students was increased in the three-dimensional condition compared to that in the two-dimensional condition. In addition, analysis of physiological signals showed that students paid more attention to the three-dimensional videos. CONCLUSIONS: A virtual reality condition has a greater effect on enhancing the learning ability of students. The analytical approach of this study can be further extended to evaluate other physiological signals of subjects in a virtual reality condition.
- MeSH
- Humans MeSH
- Students MeSH
- Learning physiology MeSH
- Virtual Reality * MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: No universal solution, based on an approved pedagogical approach, exists to parametrically describe, effectively manage, and clearly visualize a higher education institution's curriculum, including tools for unveiling relationships inside curricular datasets. OBJECTIVE: We aim to solve the issue of medical curriculum mapping to improve understanding of the complex structure and content of medical education programs. Our effort is based on the long-term development and implementation of an original web-based platform, which supports an outcomes-based approach to medical and healthcare education and is suitable for repeated updates and adoption to curriculum innovations. METHODS: We adopted data exploration and visualization approaches in the context of medical curriculum innovations in higher education institutions domain. We have developed a robust platform, covering detailed formal metadata specifications down to the level of learning units, interconnections, and learning outcomes, in accordance with Bloom's taxonomy and direct links to a particular biomedical nomenclature. Furthermore, we used selected modeling techniques and data mining methods to generate academic analytics reports from medical curriculum mapping datasets. RESULTS: We present a solution that allows users to effectively optimize a curriculum structure that is described with appropriate metadata, such as course attributes, learning units and outcomes, a standardized vocabulary nomenclature, and a tree structure of essential terms. We present a case study implementation that includes effective support for curriculum reengineering efforts of academics through a comprehensive overview of the General Medicine study program. Moreover, we introduce deep content analysis of a dataset that was captured with the use of the curriculum mapping platform; this may assist in detecting any potentially problematic areas, and hence it may help to construct a comprehensive overview for the subsequent global in-depth medical curriculum inspection. CONCLUSIONS: We have proposed, developed, and implemented an original framework for medical and healthcare curriculum innovations and harmonization, including: planning model, mapping model, and selected academic analytics extracted with the use of data mining.
- MeSH
- Curriculum * MeSH
- Humans MeSH
- Models, Statistical * MeSH
- Education, Medical * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Introduction: Hernia Basecamp is an online learning platform hosted within the WebSurg website. One of the drivers of its development was to cover the syllabus of the UEMS AWS examination, but it is a learning resource in its own right. There are currently 205 video lectures, with a number of them selected to create 10 modules of 3 h each with UEMS CME accreditation. The aim of this study was to review the Hernia Basecamp usage since launch in June 2021. Methods: The Hernia Basecamp WebSurg platform was interrogated using Matomo Analytics in January 2023 (19 month period since launch). Data on the number of visits, pages looked at and time spent on the platform per visit, along with the number of CME modules taken and passed were collected. Results: Users from 146 countries visited the Hernia Basecamp site 17,171 times (6,586 times, 38.4% in first 9 months). The top 5 countries by visitors were the United Kingdom, Mexico, Spain, United States and Germany (accounting for 29.4% of the visits). The average time spent per visit was 11 min 37 s (range: 47 s-49 min 4 s), and the number of pages/videos viewed per visit was 8.1 (range: 2-21). The number of UEMS CME modules taken was 675, and 326 (48%) of these tests were passed. Conclusion: In the first 19 months from launch, Hernia Basecamp provided over 3,000 h of hernia education. The UEMS approved CME accreditation tests were commonly used.
- Publication type
- Journal Article MeSH
BACKGROUND AND HYPOTHESIS: Cognitive impairments are a core feature of psychosis that are often evident before illness onset and have substantial impact on both clinical and real-world functional outcomes. Therefore, these are an excellent target for stratification and early detection in order to facilitate early intervention. While many studies have aimed to characterize the effects of cognition at the group level and others have aimed to detect individual differences by referencing subjects against existing norms, these studies have limited generalizability across clinical populations, demographic backgrounds, and instruments and do not fully account for the interindividual heterogeneity inherent in psychosis. STUDY DESIGN: Here, we outline the rationale, design, and analysis plan for the PRECOGNITION project, which aims to address these challenges. STUDY RESULTS: This project is a collaboration between partners in 5 European countries. The project will not generate any primary data, but by leveraging existing datasets and combining these with novel analytic methods, it will produce multiple contributions including: (i) translating normative modeling approaches pioneered in brain imaging to psychosis data, to yield "cognitive growth charts" for longitudinal tracking and individual prediction; (ii) developing machine learning models for harmonizing and stratifying cohorts on the basis of these models; and (iii) providing integrated next-generation norms, having broad sociodemographic coverage including different languages and distinct norms for individuals with psychosis and unaffected individuals. CONCLUSIONS: This study will enable precision stratification of psychosis cohorts and furnish predictions for a broad range of functional outcome measures. It will be guided throughout by lived experience experts.
- Publication type
- Journal Article MeSH
In recent years, expanding uses of artificial intelligence (AI) and machine learning have revolutionized pharmaceutical research and development, allowing us to harness multi-dimensional biological and clinical data from experimental to real-world settings (ML). Precision medicine discovery and development, from target validation to medication optimization, is driven by patient-centered iterative forward and reverse translation. As evidenced by deep characterizations of the genome, transcriptome, proteome, metabolome, microbiome, and exposome, the integration of advanced analytics into the practise of Translational Medicine is now a critical enabler for fully exploiting information contained in diverse sources of big data sets such as “omics” data. In this article, we provide an overview of machine learning (ML) applications in drug discovery and development, aligned with the three strategic pillars of Translational Medicine (target, patient, and dose), and discuss how they can alter the science and practise of the discipline. Model-informed drug discovery and development will be revolutionised if ML approaches are integrated into the science of pharmacometrics. Finally, we believe that cross-functional team activities involving clinical pharmacology, bioinformatics, and biomarker technology experts are critical to realising the promise of AI/ML-enabled Translational and Precision Medicine.
The number of microbiome-related studies has notably increased the availability of data on human microbiome composition and function. These studies provide the essential material to deeply explore host-microbiome associations and their relation to the development and progression of various complex diseases. Improved data-analytical tools are needed to exploit all information from these biological datasets, taking into account the peculiarities of microbiome data, i.e., compositional, heterogeneous and sparse nature of these datasets. The possibility of predicting host-phenotypes based on taxonomy-informed feature selection to establish an association between microbiome and predict disease states is beneficial for personalized medicine. In this regard, machine learning (ML) provides new insights into the development of models that can be used to predict outputs, such as classification and prediction in microbiology, infer host phenotypes to predict diseases and use microbial communities to stratify patients by their characterization of state-specific microbial signatures. Here we review the state-of-the-art ML methods and respective software applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on the application of ML in microbiome studies related to association and clinical use for diagnostics, prognostics, and therapeutics. Although the data presented here is more related to the bacterial community, many algorithms could be applied in general, regardless of the feature type. This literature and software review covering this broad topic is aligned with the scoping review methodology. The manual identification of data sources has been complemented with: (1) automated publication search through digital libraries of the three major publishers using natural language processing (NLP) Toolkit, and (2) an automated identification of relevant software repositories on GitHub and ranking of the related research papers relying on learning to rank approach.
- Publication type
- Journal Article MeSH
- Review MeSH
INTRODUCTION: The provision of optimal care for older adults with complex chronic conditions (CCCs) poses significant challenges due to the interplay of multiple medical, pharmacological, functional and psychosocial factors. To address these challenges, the I-CARE4OLD project, funded by the EU-Horizon 2020 programme, developed an advanced clinical decision support tool-the iCARE tool-leveraging large longitudinal data from millions of home care and nursing home recipients across eight countries. The tool uses machine learning techniques applied to data from interRAI assessments, enriched with registry data, to predict health trajectories and evaluate pharmacological and non-pharmacological interventions. This study aims to pilot the iCARE tool and assess its feasibility, usability and impact on clinical decision-making among healthcare professionals. METHODS AND ANALYSIS: A minimum of 20 participants from each of the seven countries (Italy, Belgium, the Netherlands, Poland, Finland, Czechia and the USA) participated in the study. Participants were general practitioners, geriatricians and other medical specialists, nurses, physiotherapists and other healthcare providers involved in the care of older adults with CCC. The study design involved pre-surveys and post-surveys, tool testing with hypothetical patient cases and evaluations of predictions and treatment recommendations. Two pilot modalities-decision loop and non-decision loop-were implemented to assess the effect of the iCARE tool on clinical decisions. Descriptive statistics and bivariate and multivariate analysis will be conducted. All notes and text field data will be translated into English, and a thematic analysis will be performed. The pilot testing started in September 2024, and data collection ended in January 2025. At the time this protocol was submitted for publication, data collection was complete but data analysis had not yet begun. ETHICS AND DISSEMINATION: Ethical approvals were granted in each participating country before the start of the pilot. All participants gave informed consent to participate in the study. The results of the study will be published in peer-reviewed journals and disseminated during national and international scientific and professional conferences and meetings. Stakeholders will also be informed via the project website and social media, and through targeted methods such as webinars, factsheets and (feedback) workshops. The I-CARE4OLD consortium will strive to publish as much as possible open access, including analytical scripts. Databases will not become publicly available, but the data sets used and/or analysed as part of the project can be made available on reasonable request and with the permission of the I-CARE4OLD consortium.
- MeSH
- Chronic Disease therapy MeSH
- Clinical Decision-Making * methods MeSH
- Humans MeSH
- Pilot Projects MeSH
- Prognosis MeSH
- Aged MeSH
- Machine Learning * MeSH
- Decision Support Systems, Clinical * MeSH
- Check Tag
- Humans MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH