Nanoparticles/nanotechnology
Dotaz
Zobrazit nápovědu
The field of nanotechnology has the mysterious capacity to reform every subject it touches. Nanotechnology advancements have already altered a variety of scientific and industrial fields. Nanoparticles (NPs) with sizes ranging from 1 to 100 nm (nm) are of great scientific and commercial interest. Their functions and characteristics differ significantly from those of bulk metal. Commercial quantities of NPs are synthesized using chemical or physical methods. The use of the physical and chemical approaches remained popular for many years; however, the recognition of their hazardous effects on human well-being and conditions influenced serious world perspectives for the researchers. There is a growing need in this field for simple, non-toxic, clean, and environmentally safe nanoparticle production methods to reduce environmental impact and waste and increase energy productivity. Microbial nanotechnology is relatively a new field. Using various microorganisms, a wide range of nanoparticles with well-defined chemical composition, morphology, and size have been synthesized, and their applications in a wide range of cutting-edge technological areas have been investigated. Green synthesis of the nanoparticles is cost-efficient and requires low maintenance. The present review highlights the synthesis of the nanoparticles by different microbes, their characterization, and their biotechnological potential. It further deals with the applications in biomedical, food, and textile industries as well as its role in biosensing, waste recycling, and biofuel production.
Nanočástice jsou částice menší než 100 nm, jejichž studiem se zabývají dva příbuzné spolupracující obory – nanotoxikologie a nanotechnologie. Nanočástice jsou v prostředí všudypřítomné a vzhledem k jejich velmi malým rozměrům mají jiné vlastnosti než částice stejného materiálu velikosti v řádech mikrometrů (chemická a fyzikální reaktivita, interakce s buňkami a živými organismy). Jejich toxické působení in vitro a in vivo zkoumá nanotoxikologie. Nanotechnologie se zabývá vývojem materiálů s novými vlastnostmi a funkcemi, které vycházejí z jejich malé velikosti. Nanomedicína pak využívá poznatků nanotechnologie a farmakologie k vývoji nových léčiv a terapeutických postupů. Autoři v práci shrnují současné poznatky o vlastnostech nanočástic, jejich vlivu na dýchací cesty a možnosti využití nanotechnologií v otorinolaryngologii.
Nanoparticles are particles smaller than 100 nm in diameter. They are a subject of research interest of two related, closely collaborating scientific disciplines – nanotoxicology and nanotechnology. Nanoparticles are ubiquitous in environment and due to their very small sizes, they possess different properties than the microparticles of the same material (chemical and physical reactivity, interaction with living cells and organisms). Nanotoxicology studies their toxic effect in vitro and in vivo. Nanotechnology develops materials with new properties and functions based on the small size of nanoparticles. Nanomedicine combines new knowledge of nanotechnology and pharmacology to develop new medicaments and therapeutic procedures. The authors summarize current knowledge on nanoparticle properties, their effect on respiratory tract and possible use of nanotechnology in otorhinolaryngology in the article.
- MeSH
- lidé MeSH
- nanočástice MeSH
- nanomedicína * MeSH
- nanotechnologie MeSH
- nosiče léků MeSH
- otorinolaryngologie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.
- MeSH
- lidé MeSH
- lyzozomy MeSH
- nanočástice * toxicita chemie MeSH
- nanomedicína * metody MeSH
- nanotechnologie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Nanotechnology is an emerging cutting-edge technology, which involves interdisciplinary subjects, such as physics, chemistry, biology, material science and medicine. Different methods for the synthesis of nanoparticles have been discussed here. Although physical and chemical methods have been successfully used to synthesize nanoparticles, the use of hazardous chemicals and synthesis at high temperature is a matter of concern. Hence, there is a necessity to develop eco-friendly techniques for the synthesis of nanoparticles. Biosynthesis of nanoparticles by fungi, bacteria, actinomycetes, lichen and viruses have been reported eco-friendly. Moreover, the fungal system has emerged as an efficient system for nanoparticle synthesis as fungi possess distinctive characters including high wall binding capacity, easy to culture and simpler biomass handling, etc. In this review, we have discussed fungi as an important tool for the fabrication of nanoparticles. In addition, methods and mechanism for synthesis of nanoparticles and its potential applications have also been discussed.
... Incineration of waste containing nanomaterials 43 -- Relevance of nanotechnology 44 -- Information on ... ... 77 -- What transformations can nanoparticles undergo in sewage treatment plants and how does this affect ... ... Occurrence of nanoparticles originating from everyday consumer products 79 -- 5.3. ... ... Percentage of nanoparticles associated with bacterial aggregates in an aerobic and anaerobic reactor ... ... Concentration of metallic elements and presence of Ag2S nanoparticles in urban sludge 78 ...
93 stran : ilustrace, tabulky ; 28 cm
- MeSH
- hodnocení rizik MeSH
- nakládání s odpady MeSH
- nanočástice MeSH
- nanostruktury MeSH
- nanotechnologie MeSH
- odpad tekutý - odstraňování MeSH
- odpadní vody MeSH
- životní prostředí MeSH
- Konspekt
- Sanitární technika. Vodárenství. Odpadové hospodářství. Světelná technika
- NLK Obory
- environmentální vědy
- NLK Publikační typ
- studie
These nanomaterials are already having an impact on health care. Now-a-days we are using nanoproducts in various fields. Of these, silver nanoparticles are playing a major role in the field of nanotechnology and nanomedicine. Their unique size-dependent properties make these materials superior and indispensable as they show unusual physical, chemical and biological properties. Silver nanoparticles have potential antimicrobial activity towards many pathogenic microbes. Along with this antimicrobial activity, silver nanoparticles are showing unacceptable toxic effects on human health and the environment. The chronic exposure to silver causes adverse effects such as permanent bluish-grey discoloration of the skin (argyria) and eyes (argyrosis). Besides argyria and argyrosis, exposure to soluble silver compounds may produce other toxic effects like liver and kidney damage, irritation of the eyes, skin, respiratory and intestinal tract and changes to blood cells. This review summarizes the hazardous effects of silver nanoparticles in the environment and theirs toxic effects on human health.
- MeSH
- antiinfekční látky terapeutické užití toxicita MeSH
- argyrie etiologie imunologie metabolismus MeSH
- financování organizované MeSH
- kovové nanočástice škodlivé účinky toxicita MeSH
- lidé MeSH
- nanomedicína metody trendy MeSH
- nanotechnologie metody trendy MeSH
- sloučeniny stříbra škodlivé účinky toxicita MeSH
- stříbro škodlivé účinky toxicita MeSH
- toxické účinky metabolismus škodlivé účinky MeSH
- znečištění životního prostředí škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Nanotechnology is a multidisciplinary field evolved within past few decades and playing substantial role in environment, industry, agriculture and pharmacology. Integration of nanotechnology and biotechnology has led to the foundation of nanomedicine. It has provided novel breakthroughs in cure of various ailments and disorders, drug delivery systems, detection and diagnostics of different diseases. However, use of microbially synthesized nanoparticles in health and medicine is still limited. This article highlights the green approach of nanomaterials synthesis using microbes and current status of their applications in biomedical field.
- Klíčová slova
- biosyntéza nanočástic,
- MeSH
- antibakteriální látky MeSH
- biomedicínský výzkum MeSH
- biotechnologie MeSH
- lékové transportní systémy MeSH
- nanočástice * chemie využití MeSH
- nanotechnologie MeSH
- protinádorové látky MeSH
- Publikační typ
- přehledy MeSH
DNA nanotechnology is a rapidly growing research area, where DNA may be used for wide range of applications such as construction of nanodevices serving for large scale of diverse purposes. Likewise a panel of various purified fluorescent proteins is investigated for their ability to emit their typical fluorescence spectra under influence of particular excitation. Hence these proteins may form ideal donor molecules for assembly of fluorescence resonance emission transfer (FRET) constructions. To extend the application possibilities of fluorescent proteins, while using DNA nanotechnology, we developed nanoconstruction comprising green fluorescent protein (GFP) bound onto surface of surface active nanomaghemite and functionalized with gold nanoparticles. We took advantage of natural affinity between gold and thiol moieties, which were modified to bind DNA fragment. Finally we enclosed doxorubicin into fullerene cages. Doxorubicin intercalated in DNA fragment bound on the particles and thus we were able to connect these parts together. Because GFP behaved as a donor and doxorubicin as an acceptor using excitation wavelength for GFP (395 nm) in emission wavelength of doxorubicin (590 nm) FRET was observed. This nanoconstruction may serve as a double-labeled transporter of doxorubicin guided by force of external magnetic force owing to the presence of nanomaghemite. Further nanomaghemite offers the possibility of using this technology for thermotherapy.
- MeSH
- DNA chemie MeSH
- doxorubicin chemie MeSH
- fullereny MeSH
- luminescentní proteiny chemie MeSH
- magnetické nanočástice chemie MeSH
- nanotechnologie metody MeSH
- rezonanční přenos fluorescenční energie metody MeSH
- zelené fluorescenční proteiny chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Over the past two decades, nanotechnology has been involved in an array of applications in various fields, including diagnostic kits, disease treatment, drug manufacturing, drug delivery, and gene therapy. But concerns about the toxicity of nanoparticles have greatly hindered their use; also, due to their increasing use in various industries, all members of society are exposed to the toxicity of these nanoparticles. Nanoparticles have a negative impact on various organs, including the reproductive system. They also can induce abortion in women, reduce fetal growth and development, and can damage the reproductive system and sperm morphology in men. In some cases, it has been observed that despite the modification of nanoparticles in composition, concentration, and method of administration, there is still damage to the reproductive organs. Therefore, understanding how nanoparticles affect the reproductive system is of very importance. In several studies, the nanoparticle toxicity effect on the genital organs has been investigated at the clinical and molecular levels using the in vivo and in vitro models. This study reviews these investigations and provides important data on the toxicity, hazards, and safety of nanoparticles in the reproductive system to facilitate the optimal use of nanoparticles in the industry.
- MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- nanočástice škodlivé účinky MeSH
- nanotechnologie MeSH
- nemoci pohlavních orgánů etiologie MeSH
- pohlavní orgány fyziologie MeSH
- růstová retardace plodu MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Protein microarray technology became an important research tool for study and detection of proteins, protein-protein interactions and a number of other applications. The utilization of nanoparticle-based materials and nanotechnology-based techniques for immobilization allows us not only to extend the surface for biomolecule immobilization resulting in enhanced substrate binding properties, decreased background signals and enhanced reporter systems for more sensitive assays. Generally in contemporarily developed microarray systems, multiple nanotechnology-based techniques are combined. In this review, applications of nanoparticles and nanotechnologies in creating protein microarrays, proteins immobilization and detection are summarized. We anticipate that advanced nanotechnologies can be exploited to expand promising fields of proteins identification, monitoring of protein-protein or drug-protein interactions, or proteins structures.
- MeSH
- biologické markery chemie MeSH
- čipová analýza proteinů metody MeSH
- DNA chemie MeSH
- kovové nanočástice chemie MeSH
- lékové transportní systémy MeSH
- lidé MeSH
- mapování interakce mezi proteiny MeSH
- mikroskopie atomárních sil MeSH
- nanočástice chemie MeSH
- nanotechnologie metody MeSH
- polysacharidy chemie MeSH
- povrchová plasmonová rezonance MeSH
- proteiny chemie MeSH
- reportérové geny MeSH
- vazba proteinů MeSH
- zlato chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH