PLFA analysis
Dotaz
Zobrazit nápovědu
The use of municipal solid waste as feedstock for biogas production offers an interesting possibility for waste treatment with the beneficial effect of gaining a green energy source. The involved processes are very complex, and many different organisms connected via a dynamic food web are associated with them. These complex interactions within these microbial communities are still not clearly understood. Therefore, a phospholipid fatty acid (PLFA) profile analysis method, well established in aerobic but still not as common in anaerobic systems, was used to throw some light on this matter. In the present investigation, a 750 m³ biogas reactor (Roppen, Austria) was monitored over a half-year period. During this period, four different phases in terms of gas production could be determined: low (I), increasing (II), high (III), and decreasing (IV) gas production. In combination with the PLFA profiles, we were able to identify changes in the microbial community associated with these phases.
- MeSH
- anaerobióza MeSH
- Bacteria izolace a purifikace metabolismus MeSH
- biodegradace MeSH
- biopaliva analýza mikrobiologie MeSH
- bioreaktory mikrobiologie MeSH
- fosfolipidy metabolismus MeSH
- mastné kyseliny metabolismus MeSH
- metabolom MeSH
- mikrobiologické techniky metody MeSH
- odpadky - odstraňování MeSH
- plyny metabolismus MeSH
- trávení MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
In the current context of climate change, the study of microbial communities along altitudinal gradients is especially useful. Only few studies considered altitude and season at the same time. We characterized four forest sites located in the Italian Alps, along an altitude gradient (545-2000 m a.s.l.), to evaluate the effect of altitude in spring and autumn on soil microbial properties. Each site in each season was characterized with regard to soil temperature, physicochemical properties, microbial activities (respiration, enzymes), community level physiological profiles (CLPP), microbial abundance and community structure (PLFA). Increased levels of soil organic matter (SOM) and nutrients were found at higher altitudes and in autumn, resulting in a significant increase of (soil dry-mass related) microbial activities and abundance at higher altitudes. Significant site- and season-specific effects were found for enzyme production. The significant interaction of the factors site and incubation temperature for soil microbial activities indicated differences in microbial communities and their responses to temperature among sites. CLPP revealed site-specific effects. Microbial community structure was influenced by altitudinal, seasonal and/or site-specific effects. Correlations demonstrated that altitude, and not season, was the main factor determining the changes in abiotic and biotic characteristics at the sites investigated.
- MeSH
- Bacteria klasifikace genetika izolace a purifikace MeSH
- biodiverzita * MeSH
- fylogeneze MeSH
- klimatické změny MeSH
- lesy MeSH
- nadmořská výška MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- roční období MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Itálie MeSH
Three types of Miocene claystones (amorphous, lamellar, and transitional) were aseptically sampled from depths of 30 m and 150 m below the soil surface. Respiration of these sediments was measured under conditions that prevented inoculation by other microorganisms not indigenous to the claystones in situ. Microbial respiration was higher in lamellar than amorphous claystones and was not affected by sampling depth. During cultivation, microbial biomass (as indicated by PLFA) significantly increased. Microbial biomass after cultivation was significantly higher in sediments from 30 m than from 150 m depth. Both microbial respiration and biomass increased after glucose addition.
- MeSH
- aerobióza MeSH
- Bacteria metabolismus MeSH
- biomasa MeSH
- extrakce na pevné fázi MeSH
- fosfolipidy analýza MeSH
- glukosa metabolismus MeSH
- houby metabolismus MeSH
- kyslík metabolismus MeSH
- mastné kyseliny analýza MeSH
- mikrobiální společenstva fyziologie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- půda analýza MeSH
- půdní mikrobiologie MeSH
- silikáty hliníku analýza klasifikace MeSH
- zkameněliny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Microbial ecology has been recognized as useful in archaeological studies. At Archaic Monte Iato in Western Sicily, a native (indigenous) building was discovered. The objective of this study was the first examination of soil microbial communities related to this building. Soil samples were collected from archaeological layers at a ritual deposit (food waste disposal) in the main room and above the fireplace in the annex. Microbial soil characterization included abundance (cellular phospholipid fatty acids (PLFA), viable bacterial counts), activity (physiological profiles, enzyme activities of viable bacteria), diversity, and community structure (bacterial and fungal Illumina amplicon sequencing, identification of viable bacteria). PLFA-derived microbial abundance was lower in soils from the fireplace than in soils from the deposit; the opposite was observed with culturable bacteria. Microbial communities in soils from the fireplace had a higher ability to metabolize carboxylic and acetic acids, while those in soils from the deposit metabolized preferentially carbohydrates. The lower deposit layer was characterized by higher total microbial and bacterial abundance and bacterial richness and by a different carbohydrate metabolization profile compared to the upper deposit layer. Microbial community structures in the fireplace were similar and could be distinguished from those in the two deposit layers, which had different microbial communities. Our data confirmed our hypothesis that human consumption habits left traces on microbiota in the archaeological evidence; therefore, microbiological residues as part of the so-called ecofacts are, like artifacts, key indicators of consumer behavior in the past.
- MeSH
- acetáty metabolismus MeSH
- archeologie * MeSH
- Bacteria klasifikace genetika izolace a purifikace metabolismus MeSH
- bakteriální nálož MeSH
- biodiverzita MeSH
- biomasa MeSH
- dějiny starověku MeSH
- DNA bakterií MeSH
- DNA fungální MeSH
- enzymatické testy MeSH
- fosfolipidy metabolismus MeSH
- heterotrofní procesy MeSH
- houby klasifikace genetika metabolismus MeSH
- kyseliny karboxylové metabolismus MeSH
- lidské činnosti dějiny MeSH
- mastné kyseliny metabolismus MeSH
- mikrobiální společenstva genetika fyziologie MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S genetika MeSH
- shluková analýza MeSH
- Check Tag
- dějiny starověku MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
Microbial communities in human-impacted soils of ancient settlements have been proposed to be used as ecofacts (bioindicators) of different ancient anthropogenic activities. In this study, bacterial, archaeal and fungal communities inhabiting soil of three archaic layers, excavated at the archaeological site on Monte Iato (Sicily, Italy) and believed to have been created in a chronological order in archaic times in the context of periodic cultic feasts, were investigated in terms of (i) abundance (phospholipid fatty acid (PLFA) analysis and quantitative PCR)), (ii) carbon(C)-source consumption patterns (Biolog-Ecoplates) and (iii) diversity and community composition (Illumina amplicon sequencing). PLFA analyses demonstrated the existence of living bacteria and fungi in the soil samples of all three layers. The upper layer showed increased levels of organic C, which were not concomitant with an increment in the microbial abundance. In taxonomic terms, the results indicated that bacterial, archaeal and fungal communities were highly diverse, although differences in richness or diversity among the three layers were not detected for any of the communities. However, significantly different microbial C-source utilization patterns and structures of bacterial, archaeal and fungal communities in the three layers confirmed that changing features of soil microbial communities reflect different past human activities.
- MeSH
- Archaea genetika MeSH
- archeologie metody MeSH
- Bacteria genetika MeSH
- biodiverzita MeSH
- DNA bakterií genetika MeSH
- DNA fungální genetika MeSH
- dusík metabolismus MeSH
- ekosystém MeSH
- houby genetika MeSH
- lidé MeSH
- lidské činnosti MeSH
- půda MeSH
- půdní mikrobiologie MeSH
- uhlík metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Sicilie MeSH
This review deals with techniques and methods used in the study of the function and development of microorganisms occurring in soil with emphasis on the contributions of Czech Academician Ivan Málek and his coworkers or fellows (Jiří Macura, František Kunc) to the development of basic techniques used in soil microbiology. Early studies, including batch cultivation and respirometric techniques, as well as later developments of percolation and continuous-flow methods of cultivation of soil microorganisms are discussed. Recent developments in the application of analytical chemistry (HPLC or GC) and of molecular biological techniques to ecological questions that have revolutionized concepts in soil microbiology and microbial ecology are also briefly mentioned, including denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), phospholipid fatty acid analysis (PLFA) and others. The shift of soil microbiology from the study of individual microorganisms to entire microbial communities, including nonculturable species, is briefly discussed.
Phytomanagement of trace element-contaminated soils can reduce soil toxicity and restore soil ecological functions, including the soil gas exchange with the atmosphere. We studied the emission rate of the greenhouse gases (GHGs) CO2, CH4, and N2O; the potential CH4 oxidation; denitrification enzyme activity (DEA), and glucose mineralization of a Cu-contaminated soil amended with dolomitic limestone and compost, alone or in combination, after a 2-year phytomanagement with a mixed stand of Populus nigra, Salix viminalis, S. caprea, and Amorpha fruticosa. Soil microbial biomass and microbial community composition after analysis of the phospholipid fatty acids (PLFA) profile were determined. Phytomanagement significantly reduced Cu availability and soil toxicity, increased soil microbial biomass and glucose mineralization capacity, changed the composition of soil microbial communities, and increased the CO2 and N2O emission rates and DEA. Despite such increases, microbial communities were evolving toward less GHG emission per unit of microbial biomass than in untreated soils. Overall, the aided phytostabilization option would allow methanotrophic populations to establish in the remediated soils due to decreased soil toxicity and increased nutrient availability.
The feasibility of decontaminating creosote-treated wood (CTW) by co-composting with agricultural wastes was investigated using two bulking agents, grass cuttings (GC) and broiler litter (BL), each employed at a 1:1 ratio with the matrix. The initial concentration of total polycyclic aromatic hydrocarbons (PAHs) in CTW (26,500 mg kg(-1)) was reduced to 3 and 19% after 240 d in GC and BL compost, respectively. PAH degradation exceeded the predicted bioaccesible threshold, estimated through sequential supercritical CO2 extraction, together with significant detoxification, assessed by contact tests using Vibrio fisheri and Hordeum vulgare. GC composting was characterized by high microbial biomass growth in the early phases, as suggested by phospholipid fatty acid analyses. Based on the 454-pyrosequencing results, fungi (mostly Saccharomycetales) constituted an important portion of the microbial community, and bacteria were characterized by rapid shifts (from Firmicutes (Bacilli) and Actinobacteria to Proteobacteria). However, during BL composting, larger amounts of prokaryotic and eukaryotic PLFA markers were observed during the cooling and maturation phases, which were dominated by Proteobacteria and fungi belonging to the Ascomycota and those putatively related to the Glomeromycota. This work reports the first in-depth analysis of the chemical and microbiological processes that occur during the co-composting of a PAH-contaminated matrix.
- MeSH
- Bacteria klasifikace genetika metabolismus MeSH
- DNA bakterií genetika MeSH
- DNA fungální genetika MeSH
- dřevo * MeSH
- houby klasifikace genetika metabolismus MeSH
- kreosot * MeSH
- látky znečišťující půdu metabolismus MeSH
- mastné kyseliny metabolismus MeSH
- nakládání s odpady metody MeSH
- polycyklické aromatické uhlovodíky metabolismus MeSH
- půda * MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Climate change will affect semiarid ecosystems through severe droughts that increase the competition for resources in plant and microbial communities. In these habitats, adaptations to climate change may consist of thinning-that reduces competition for resources through a decrease in tree density and the promotion of plant survival. We deciphered the functional and phylogenetic responses of the microbial community to 6 years of drought induced by rainfall exclusion and how forest management affects its resistance to drought, in a semiarid forest ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel, community-based strategies in the face of climate change. The diversity and the composition of the total and active soil microbiome were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially mediated ecosystem multifunctionality was studied by the integration of soil enzyme activities related to the cycles of C, N, and P. The microbial biomass and ecosystem multifunctionality decreased in drought-plots, as a consequence of the lower soil moisture and poorer plant development, but this decrease was more notable in unthinned plots. The structure and diversity of the total bacterial community was unaffected by drought at phylum and order level, but did so at genus level, and was influenced by seasonality. However, the total fungal community and the active microbial community were more sensitive to drought and were related to ecosystem multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of ecosystem multifunctionality to drought through changes in the active microbial community. The integration of total and active microbiome analyses avoids misinterpretations of the links between the soil microbial community and climate change.
Biogeochemical processes and ecosystemic functions are mostly driven by soil microbial communities. However, most methods focus on evaluating the total microbial community and fail to discriminate its active fraction which is linked to soil functionality. Precisely, the activity of the microbial community is strongly limited by the availability of organic carbon (C) in soils under arid and semi-arid climate. Here, we provide a complementary genomic and metaproteomic approach to investigate the relationships between the diversity of the total community, the active diversity and ecosystem functionality across a dissolved organic carbon (DOC) gradient in southeast Spain. DOC correlated with the ecosystem multifunctionality index composed by soil respiration, enzyme activities (urease, alkaline phosphatase and β-glucosidase) and microbial biomass (phospholipid fatty acids, PLFA). This study highlights that the active diversity (determined by metaprotoemics) but not the diversity of the whole microbial community (evaluated by amplicon gene sequencing) is related to the availability of organic C and it is also connected to the ecosystem multifunctionality index. We reveal that DOC shapes the activities of bacterial and fungal populations in Mediterranean semi-arid soils and determines the compartmentalization of functional niches. For instance, Rhizobales thrived at high-DOC sites probably fuelled by metabolism of one-C compounds. Moreover, the analysis of proteins involved in the transport and metabolism of carbohydrates revealed that Ascomycota and Basidiomycota occupied different nutritional niches. The functional mechanisms for niche specialization were not constant across the DOC gradient.
- MeSH
- biodiverzita * MeSH
- pentacyklické triterpeny MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- uhlík chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Španělsko MeSH