The numerous fossil specimens described as consecutive series of different larval stages of two species, Tchirkovaea guttata and Paimbia fenestrata (Palaeodictyoptera: Tchirkovaeidae), were reinvestigated with emphasis on comparing the development and growth of their wings with that of the wings of a recent mayfly, Cloeon dipterum. This unique fossil material was for a long time considered as undisputed evidence for an unusual type of wing development in Palaeozoic insects. The original idea was that the larvae of Palaeodictyopterida had wings, which were articulated and fully movable in their early stages of postembryonic development and that these gradually enlarging wings changed their position from longitudinal to perpendicular to the body axis. Moreover, the development of wings was supposed to include two or more subimaginal instars, implying that the fully winged instars moulted several times during their postembryonic development. The results of the present study revealed that there is no evidence that this series of nymphal, subimaginal and imaginal wings provide support for the original idea of wing development in Palaeozoic insects. On the contrary, our results indicate, that the supposed palaeodictyopteran larval wings are in fact wing pads with a wing developing inside the cuticular sheath as in recent hemimetabolous insects. Moreover, this study newly reinterpreted the wing pad base of Parathesoneura carpenteri and confirmed the presence of nygma like structures on wings and wing pads of palaeodictyopteran Tchirkovaeidae.
Insect metamorphosis boasts spectacular cases of postembryonic development when juveniles undergo massive morphogenesis before attaining the adult form and function; in moths or flies the larvae do not even remotely resemble their adult parents. A selective advantage of complete metamorphosis (holometaboly) is that within one species the two forms with different lifestyles can exploit diverse habitats. It was the environmental adaptation and specialization of larvae, primarily the delay and internalization of wing development, that eventually required an intermediate stage that we call a pupa. It is a long-held and parsimonious hypothesis that the holometabolous pupa evolved through modification of a final juvenile stage of an ancestor developing through incomplete metamorphosis (hemimetaboly). Alternative hypotheses see the pupa as an equivalent of all hemimetabolous moulting cycles (instars) collapsed into one, and consider any preceding holometabolous larval instars free-living embryos stalled in development. Discoveries on juvenile hormone signalling that controls metamorphosis grant new support to the former hypothesis deriving the pupa from a final pre-adult stage. The timing of expression of genes that repress and promote adult development downstream of hormonal signals supports homology between postembryonic stages of hemimetabolous and holometabolous insects. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Mutual interactions of the phytohormones, cytokinins and auxin determine root or shoot identity during postembryonic de novo organogenesis in plants. However, our understanding of the role of hormonal metabolism and perception during early stages of cell fate reprogramming is still elusive. Here we show that auxin activates root formation, whereas cytokinins mediate early loss of the root identity, primordia disorganisation and initiation of shoot development. Exogenous and endogenous cytokinins influence the initiation of newly formed organs, as well as the pace of organ development. The process of de novo shoot apical meristem establishment is accompanied by accumulation of endogenous cytokinins, differential regulation of genes for individual cytokinin receptors, strong activation of AHK4-mediated signalling and induction of the shoot-specific homeodomain regulator WUSCHEL. The last is associated with upregulation of isopentenyladenine-type cytokinins, revealing higher shoot-forming potential when compared with trans-zeatin. Moreover, AHK4-controlled cytokinin signalling negatively regulates the root stem cell organiser WUSCHEL RELATED HOMEOBOX 5 in the root quiescent centre. We propose an important role for endogenous cytokinin biosynthesis and AHK4-mediated cytokinin signalling in the control of de novo-induced organ identity.
- MeSH
- Arabidopsis cytology embryology genetics MeSH
- Cytokinins genetics metabolism MeSH
- Homeodomain Proteins genetics metabolism MeSH
- Meristem cytology embryology MeSH
- Organogenesis, Plant physiology MeSH
- Protein Kinases genetics metabolism MeSH
- Arabidopsis Proteins genetics metabolism MeSH
- Receptors, Cell Surface genetics metabolism MeSH
- Signal Transduction physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Plant mitogen-activated protein kinases (MAPKs) constitute a network of signaling cascades responsible for transducing extracellular stimuli and decoding them to dedicated cellular and developmental responses that shape the plant body. Over the last decade, we have accumulated information about how MAPK modules control the development of reproductive tissues and gametes and the embryogenic and postembryonic development of vegetative organs such as roots, root nodules, shoots, and leaves. Of key importance to understanding how MAPKs participate in developmental and environmental signaling is the characterization of their subcellular localization, their interactions with upstream signal perception mechanisms, and the means by which they target their substrates. In this review, we summarize the roles of MAPK signaling in the regulation of key plant developmental processes, and we survey what is known about the mechanisms guiding the subcellular compartmentalization of MAPK modules.
Juvenile hormones (JH) and ecdysteroids regulate many biological and metabolic processes. CREB-binding protein (CBP) is a transcriptional co-regulator with histone acetyltransferase (HAT) activity. Therefore, CBP is involved in activation of many transcription factors that regulate expression of genes associated with postembryonic development in insects. However, the function of CBP in JH action in insects is not well understood. Hence, we studied the role of CBP in JH action in the red flour beetle, Tribolium castaneum and the Tribolium cell line. CBP knockdown caused a decrease in JH induction of genes, Kr-h1, 4EBP and G13402 in T. castaneum larvae, adults and TcA cells whereas, Trichostatin A [TSA, a histone deacetylase (HDAC) inhibitor] induced the expression of these JH-response genes. Western blot analysis with specific antibodies revealed the requirement of CBP for the acetylation of H3K18 and H3K27 in both T. castaneum and TcA cells. Chromatin immunoprecipitation (Chip) assays showed the importance of CBP-mediated acetylation of H3K27 for JH induction of Kr-h1, 4EBP, and G13402 in TcA cells. These data suggest that CBP plays an important role in JH action in the model insect, T.castaneum.
- MeSH
- Acetylation MeSH
- Gene Knockout Techniques MeSH
- Histones metabolism MeSH
- Insect Proteins genetics metabolism MeSH
- Juvenile Hormones pharmacology MeSH
- CREB-Binding Protein genetics metabolism MeSH
- Tribolium genetics growth & development metabolism MeSH
- Gene Expression Regulation, Developmental drug effects MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
BACKGROUND: Juvenile hormones (JH) and ecdysteroids control postembryonic development in insects. They serve as valuable targets for pest management. Hence, understanding the molecular mechanisms of their action is of crucial importance. CREB-binding protein (CBP) is a universal transcriptional co-regulator. It controls the expression of several genes including those from hormone signaling pathways through co-activation of many transcription factors. However, the role of CBP during postembryonic development in insects is not well understood. Therefore, we have studied the role of CBP in postembryonic development in Tribolium, a model coleopteran insect. RESULTS: CBP is ubiquitously expressed in the red flour beetle, Tribolium castaneum. RNA interference (RNAi) mediated knockdown of CBP resulted in a decrease in JH induction of Kr-h1 gene expression in Tribolium larvae and led to a block in their development. Moreover, the injection of CBP double-stranded RNA (dsRNA) showed lethal phenotypes within 8 days of injection. RNA-seq and subsequent differential gene expression analysis identified CBP target genes in Tribolium. Knockdown of CBP caused a decrease in the expression of 1306 genes coding for transcription factors and other proteins associated with growth and development. Depletion of CBP impaired the expression of several JH response genes (e.g., Kr-h1, Hairy, early trypsin) and ecdysone response genes (EcR, E74, E75, and broad complex). Further, GO enrichment analyses of the downregulated genes showed enrichment in different functions including developmental processes, pigmentation, anatomical structure development, regulation of biological and cellular processes, etc. CONCLUSION: These data suggest diverse but crucial roles for CBP during postembryonic development in the coleopteran model insect, Tribolium. It can serve as a target for RNAi mediated pest management of this stored product pest.
- MeSH
- Gene Expression MeSH
- Insect Proteins antagonists & inhibitors genetics metabolism physiology MeSH
- Juvenile Hormones pharmacology MeSH
- Larva genetics metabolism MeSH
- CREB-Binding Protein antagonists & inhibitors genetics metabolism physiology MeSH
- RNA Interference MeSH
- Tribolium genetics growth & development metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The mysterious monotypic genus Folkmanovius Dobroruka, 1957, and its type species, Folkmanovius paralellus Dobroruka, 1957, have never been found again since their description, although the patria of these taxa-the Czech Republic-is among the best studied regions regarding Chilopoda. Analysing the characters given in the original description, we found Folkmanovius to be in the closest relation with another European genus, Clinopodes C.L. Koch, 1847. Some characters could fit with the only Central European representative of this latter genus (Clinopodes flavidus) if, and only if, we consider that the description was based on juvenile specimens. Studying C. flavidus specimens of the first adolescens stadia, we found morphological changes during postembryonic development for several characters, documented first time for the genus. These results explain and elucidate all the tentative differential characters of Dobroruka's taxa and prove that Folkmanovius Dobroruka, 1957, is a junior subjective synonym of Clinopodes C.L. Koch, 1847, (syn. nov.), as well as Folkmanovius paralellus Dobroruka, 1957, being a junior subjective synonym of Clinopodes flavidus C.L. Koch, 1847 (syn. nov.).
- MeSH
- Arthropods anatomy & histology classification growth & development MeSH
- Species Specificity MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
The plant hormone auxin is a key regulator of plant growth and development. Auxin levels are sensed and interpreted by distinct receptor systems that activate a broad range of cellular responses. The Auxin-Binding Protein1 (ABP1) that has been identified based on its ability to bind auxin with high affinity is a prime candidate for the extracellular receptor responsible for mediating a range of auxin effects, in particular, the fast non-transcriptional ones. Contradictory genetic studies suggested prominent or no importance of ABP1 in many developmental processes. However, how crucial the role of auxin binding to ABP1 is for its functions has not been addressed. Here, we show that the auxin-binding pocket of ABP1 is essential for its gain-of-function cellular and developmental roles. In total, 16 different abp1 mutants were prepared that possessed substitutions in the metal core or in the hydrophobic amino acids of the auxin-binding pocket as well as neutral mutations. Their analysis revealed that an intact auxin-binding pocket is a prerequisite for ABP1 to activate downstream components of the ABP1 signalling pathway, such as Rho of Plants (ROPs) and to mediate the clathrin association with membranes for endocytosis regulation. In planta analyses demonstrated the importance of the auxin binding pocket for all known ABP1-mediated postembryonic developmental processes, including morphology of leaf epidermal cells, root growth and root meristem activity, and vascular tissue differentiation. Taken together, these findings suggest that auxin binding to ABP1 is central to its function, supporting the role of ABP1 as auxin receptor.
- MeSH
- Arabidopsis genetics growth & development metabolism MeSH
- Indoleacetic Acids metabolism MeSH
- Mutagenesis MeSH
- Receptors, Cell Surface genetics metabolism MeSH
- Plant Growth Regulators metabolism MeSH
- Plant Proteins genetics metabolism MeSH
- Amino Acid Substitution MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Juvenile hormone (JH) postpones metamorphosis of insect larvae until they have attained an appropriate stage and size. Then, during the final larval instar, a drop in JH secretion permits a metamorphic molt that transforms larvae to adults either directly (hemimetaboly) or via a pupal stage (holometaboly). In both scenarios, JH precludes metamorphosis by activating the Kr-h1 gene through a JH receptor, Methoprene-tolerant (Met). Removal of Met, Kr-h1, or JH itself triggers deleterious precocious metamorphosis. Although JH is thought to maintain the juvenile status throughout larval life, various methods of depleting JH failed to induce metamorphosis in early-instar larvae. To determine when does JH signaling become important for the prevention of precocious metamorphosis, we chose the hemimetabolous bug, Pyrrhocoris apterus, and the holometabolous silkworm, Bombyx mori. Both species undergo a fixed number of five larval instars. Pyrrhocoris larvae subjected to RNAi-mediated knockdown of Met or Kr-h1 underwent precocious adult development when treated during the fourth (penultimate) instar, but younger larvae proved increasingly resistant to loss of either gene. The earliest instar developing minor signs of precocious metamorphosis was the third. Therefore, the JH-response genes may not be required to maintain the larval program during the first two larval instars. Next, we examined Bombyx mod mutants that cannot synthesize authentic, epoxidized forms of JH. Although mod larvae expressed Kr-h1 mRNA at severely reduced levels since hatching, they only entered metamorphosis by pupating after four, rarely three instars. Based on findings in Pyrrhocoris and Bombyx, we propose that insect postembryonic development is initially independent of JH. Only later, when larvae gain competence to enter metamorphosis, JH signaling becomes necessary to prevent precocious metamorphosis and to optimize growth.
- MeSH
- Analysis of Variance MeSH
- Metamorphosis, Biological physiology MeSH
- Bombyx growth & development MeSH
- DNA Primers genetics MeSH
- Species Specificity MeSH
- Heteroptera growth & development MeSH
- Juvenile Hormones metabolism MeSH
- Larva physiology MeSH
- Methoprene MeSH
- RNA Interference MeSH
- Signal Transduction physiology MeSH
- Kruppel-Like Transcription Factors metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The steroid hormone ecdysone coordinates insect growth and development, directing the major postembryonic transition of forms, metamorphosis. The steroid-deficient ecdysoneless1 (ecd1) strain of Drosophila melanogaster has long served to assess the impact of ecdysone on gene regulation, morphogenesis, or reproduction. However, ecd also exerts cell-autonomous effects independently of the hormone, and mammalian Ecd homologs have been implicated in cell cycle regulation and cancer. Why the Drosophila ecd1 mutants lack ecdysone has not been resolved. Here, we show that in Drosophila cells, Ecd directly interacts with core components of the U5 snRNP spliceosomal complex, including the conserved Prp8 protein. In accord with a function in pre-mRNA splicing, Ecd and Prp8 are cell-autonomously required for survival of proliferating cells within the larval imaginal discs. In the steroidogenic prothoracic gland, loss of Ecd or Prp8 prevents splicing of a large intron from CYP307A2/spookier (spok) pre-mRNA, thus eliminating this essential ecdysone-biosynthetic enzyme and blocking the entry to metamorphosis. Human Ecd (hEcd) can substitute for its missing fly ortholog. When expressed in the Ecd-deficient prothoracic gland, hEcd re-establishes spok pre-mRNA splicing and protein expression, restoring ecdysone synthesis and normal development. Our work identifies Ecd as a novel pre-mRNA splicing factor whose function has been conserved in its human counterpart. Whether the role of mammalian Ecd in cancer involves pre-mRNA splicing remains to be discovered.
- MeSH
- Cell Cycle genetics MeSH
- Drosophila melanogaster genetics MeSH
- Ecdysone genetics MeSH
- Cells, Cultured MeSH
- Larva genetics MeSH
- Mutation genetics MeSH
- RNA Precursors genetics MeSH
- Drosophila Proteins genetics MeSH
- Ribonucleoproteins, Small Nuclear genetics MeSH
- RNA Splicing genetics MeSH
- Spliceosomes genetics MeSH
- Steroids metabolism MeSH
- Gene Expression Regulation, Developmental genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH