Q42181277 Dotaz Zobrazit nápovědu
Transcellular trafficking in which various molecules are transported across the interior of a cell, is commonly classified as transcytosis. However, historically this term has been used synonymously with transudation. In both cases transcellular trafficking starts with the internalization of proteins or other compounds on the basal or basolateral side of a cell and continues by their transport across the interior to the apical pole (or vice versa) where they are subsequently released. This allows a cell to release products which are synthesized elsewhere. Here, we discuss the common features of both transcytosis and transudation, and that which differentiates them. It appears that transcytosis and transudation are identical in terms of vesicular import and endosomal sorting of cargo, but completely differ in the re-secretion process. Specialized epithelial cells re-release substantial quantities of the endocytosed material, and often also a great variety. Some recent studies indicate that this is achieved by non-canonical apocrine secretion rather than by the regular vesicular mechanism of exocytosis, and takes place only on the apical pole. This massive re-release of endocytosed proteins, and potentially other compounds via the apocrine mechanism should be considered as transudation, distinct from transcytosis.
The Lon protein is a protease belonging to the superfamily of ATPases associated with diverse cellular activities (AAA+). Its main function is the control of protein quality and the maintenance of proteostasis by degradation of misfolded and damaged proteins, which occur in response to numerous stress conditions. It also participates in the regulation of levels of transcription factors that control pathogenesis, development and stress response. We focus our interest on the structure of human mitochondrial Lon (hLon) protease, whose altered expression levels are linked to some severe diseases such as epilepsy, myopathy, or lateral sclerosis. We present the first 3D structure of the ADP-bound human Lon S885A mutant obtained by electron microscopy as a result of preliminary negative staining studies. S885A appears as a hexameric ring of 120 Å diameter having 90 Å in height. Its resolution was estimated at 19 Å by the FSC = 0.5 criterion. This model is a primary step towards the understanding of the mechanism of action of the Lon protease and its involvement in the pathogenesis development.
The spatial organization of the cell nucleus into separated domains with a specific macromolecular composition seems to be the fundamental principle that regulates its functioning. Because of the importance of regulation at the nuclear level, the cell nucleus and its domains have been intensively studied. This review is focused on the nuclear domain termed the Polycomb (PcG) body. We summarize and discuss data reported in the literature on different components of the PcG body that could form its structural basis. First, we describe the protein nature of the PcG body and the gene silencing factory model. Second, we review the target genes of Polycomb-mediated silencing and discuss their essentiality for the structural nature of the PcG body. In this respect, two different schematic models are presented. Third, we mention new data on the importance of RNAs, insulator elements and insulator proteins for the structure of PcG bodies. With this review, we hope to illustrate the importance of understanding the nature of the PcG subcompartment. The structural basis of a subcompartment directly reflects its status in the cell nucleus and the mechanism of its function.
Electron tomographic reconstructions suffer from a number of artefacts arising from effects accompanying the processes of acquisition of a set of tilted projections of the specimen in a transmission electron microscope and from its subsequent computational handling. The most pronounced artefacts usually come from imprecise projection alignment, distortion of specimens during tomogram acquisition and from the presence of a region of missing data in the Fourier space, the "missing wedge". The ray artefacts caused by the presence of the missing wedge can be attenuated by the angular image filter, which attenuates the transition between the data and the missing wedge regions. In this work, we present an analysis of the influence of angular filtering on the resolution of averaged repetitive structural motives extracted from three-dimensional reconstructions of tomograms acquired in the single-axis tilting geometry.
Myelodysplastic syndromes (MDS) represent a clinically and genetically heterogeneous group of clonal haematopoietic diseases characterized by a short survival and high rate of transformation to acute myeloid leukaemia (AML). In spite of this variability, MDS is associated with typical recurrent non-random cytogenetic defects. Chromosomal abnormalities are detected in the malignant bone-marrow cells of approximately 40-80 % of patients with primary or secondary MDS. The most frequent chromosomal rearrangements involve chromosomes 5, 7 and 8. MDS often shows presence of unbalanced chromosomal changes, especially large deletions [del(5), del(7q), del(12p), del(18q), del(20q)] or losses of whole chromosomes (7 and Y). The most typical cytogenetic abnormality is a partial or complete deletion of 5q- that occurs in roughly 30 % of all MDS cases either as the sole abnormality or in combination with other aberrations as a part of frequently complex karyotypes. The mechanisms responsible for the formation of MDS-associated recurrent translocations and complex karyotypes are unknown. Since some of the mentioned aberrations are characteristic for several haematological malignancies, more general cellular conditions could be expected to play a role. In this article, we introduce the most common rearrangements linked to MDS and discuss the potential role of the non-random higher-order chromatin structure in their formation. A contribution of the chromothripsis - a catastrophic event discovered only recently - is considered to explain how complex karyotypes may occur (during a single event).
- MeSH
- chromatin metabolismus MeSH
- chromozomální aberace * MeSH
- genová přestavba * MeSH
- lidé MeSH
- myelodysplastické syndromy genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
BACKGROUND: Both high hyperdiploidy (HeH) and the translocation t(9;22)(q34;q11) are recurrent abnormalities in childhood B-cell acute lymphoblastic leukemia (ALL) and both are used in current classification to define different genetic and prognostic subtypes of the disease. The coexistence of these two primary genetic aberrations within the same clone is very rare in children with ALL. Here we report a new case of a 17-year-old girl with newly diagnosed ALL and uncommon cytogenetic and clinical finding combining high hyperdiploidy and a cryptic BCR/ABL1 fusion and an inherited Charcot-Marie-Tooth neuropathy detected during the induction treatment. RESULTS: High hyperdiploid karyotype 51,XX,+X,+4,+14,+17,+21 without apparent structural aberrations was detected by conventional cytogenetic analysis and multicolor FISH. A cryptic BCR/ABL1 fusion, which was caused by the insertion of part of the ABL1 gene into the 22q11 region, was proved in HeH clone by FISH, RT-PCR and CGH-SNP array. In addition, an abnormal FISH pattern previously described as the deletion of the 3'BCR region in some BCR/ABL1 positive cases was not proved in our patient. CONCLUSION: A novel case of extremely rare childhood ALL, characterized by HeH and a cryptic BCR/ABL1 fusion, is presented and to the best of our knowledge described for the first time. The insertion of ABL1 into the BCR region in malignant cells is supposed. Clearly, further studies are needed to determine the genetic consequences and prognostic implications of these unusual cases.
- Publikační typ
- časopisecké články MeSH
- MeSH
- bisfosfonáty farmakologie terapeutické užití MeSH
- lidé MeSH
- ligand RANK antagonisté a inhibitory MeSH
- monoklonální protilátky farmakologie terapeutické užití MeSH
- osteoporotické fraktury prevence a kontrola MeSH
- osteoporóza etiologie klasifikace terapie MeSH
- remodelace kosti fyziologie účinky léků MeSH
- resorpce kosti chemicky indukované MeSH
- rizikové faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- klinické zkoušky, fáze III MeSH
In mammalian cells, transcriptionally active ribosomal genes are replicated in the early S phase, and the silent ribosomal genes in the late S phase, though mechanisms of this timing remain unknown. UBF (Upstream Binding Factor), a DNA binding protein and component of the pol I transcription machinery, is considered to be responsible for the loose chromatin structure of the active rDNA. Here we question whether such structure alone can ensure early replication of DNA. We investigate this problem on the model of pseudo-NORs, the tandem arrays of heterologous DNA sequence with high affinity for UBF, introduced into human chromosomes. Such arrays are not transcribed, yet efficiently bind UBF and mimic the chromatin structure of active rDNA. In our study, a human derived stable cell line containing one pseudo-NOR on the chromosome 10 was transiently transfected with UBF-GFP and PCNA-RFP, which allowed us to observe in vivo the growth of pseudo-NORs resulted from their replication. We found that replication of pseudo-NORs is not restricted to the early S phase, but continues in the late S phase at a significant level. These results were confirmed in the experiments with incorporation of thymidin analog EdU and BrdU ChIP assay. Similar results were obtained with another cell line containing pseudo-NOR on the chromosome 7. Our data indicate that the specific loose structure of chromatin, produced by the architect protein UBF, is not sufficient for the early replication.
- MeSH
- imunohistochemie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- organizátor jadérka genetika metabolismus MeSH
- proliferační antigen buněčného jádra genetika metabolismus MeSH
- ribozomální DNA genetika metabolismus MeSH
- S fáze genetika fyziologie MeSH
- transkripční iniciační komplex Pol1 - proteiny genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The essential role of MCM 2–7 proteins in the initiation of DNA replication in all eukaryotes is well known. Their role in replication elongation is supported by numerous studies, but there is still a knowledge gap in this respect. Even though biochemical studies have established an association of MCM proteins with replication forks, previous immunofluorescence studies in mammalian cells have suggested that MCM 2–7 proteins are displaced after replication initiation from sites of DNA replication. Therefore, we used a robust statistical method to more precisely analyse immunofluorescence localization of MCM 2 proteins with respect to the DNA replication foci. We show that despite the predominantly different localization of MCM 2 and replication signals, there is still a small but significant fraction of MCM 2 proteins that co-localize with DNA replication foci during most of S phase. The fluorescence localization of the MCM 2 proteins and DNA replication may thus reflect an active function of MCM 2 proteins associated with the replication foci and partially explain one facet of the “MCM paradox”.
- MeSH
- buněčné jádro metabolismus MeSH
- chromatin metabolismus MeSH
- financování organizované MeSH
- fluorescenční protilátková technika MeSH
- HeLa buňky MeSH
- jaderné proteiny metabolismus MeSH
- konfokální mikroskopie MeSH
- lidé MeSH
- neparametrická statistika MeSH
- počítačové zpracování obrazu metody MeSH
- proteiny buněčného cyklu metabolismus MeSH
- replikační počátek MeSH
- S fáze MeSH
- Check Tag
- lidé MeSH
The nucleolus is a nuclear compartment that plays an important role in ribosome biogenesis. Some structural features and epigenetic patterns are shared between nucleolar and non-nucleolar compartments. For example, the location of transcriptionally active mRNA on extended chromatin loop species is similar to that observed for transcriptionally active ribosomal DNA (rDNA) genes on so-called Christmas tree branches. Similarly, nucleolus organizer region-bearing chromosomes located a distance from the nucleolus extend chromatin fibers into the nucleolar compartment. Specific epigenetic events, such as histone acetylation and methylation and DNA methylation, also regulate transcription of both rRNA- and mRNA-encoding loci. Here, we review the epigenetic mechanisms and structural features that regulate transcription of ribosomal and mRNA genes. We focus on similarities in epigenetic and structural regulation of chromatin in nucleoli and the surrounding non-nucleolar region and discuss the role of proteins, such as heterochromatin protein 1, fibrillarin, nucleolin, and upstream binding factor, in rRNA synthesis and processing.
- MeSH
- buněčné jadérko genetika metabolismus ultrastruktura MeSH
- chromatin genetika ultrastruktura MeSH
- epigeneze genetická MeSH
- genetická transkripce MeSH
- geny rRNA MeSH
- histony metabolismus MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- ribozomální DNA genetika MeSH
- ribozomy genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- srovnávací studie MeSH