- MeSH
- Models, Anatomic MeSH
- Biomedical Engineering methods trends MeSH
- Diagnostic Imaging trends utilization MeSH
- Laboratories organization & administration trends utilization MeSH
- Humans MeSH
- Musculoskeletal System MeSH
- Arthroplasty, Replacement, Knee methods instrumentation utilization MeSH
- Research Design MeSH
- Equipment and Supplies MeSH
- Imaging, Three-Dimensional methods trends utilization MeSH
- Check Tag
- Humans MeSH
The application of microfluidic devices as next-generation cell and tissue culture systems has increased impressively in the last decades. With that, a plethora of materials as well as fabrication methods for these devices have emerged. Here, we describe the rapid prototyping of microfluidic devices, using micromilling and vapour-assisted thermal bonding of polymethyl methacrylate (PMMA), to create a spheroid-on-a-chip culture system. Surface roughness of the micromilled structures was assessed using scanning electron microscopy (SEM) and atomic force microscopy (AFM), showing that the fabrication procedure can impact the surface quality of micromilled substrates with milling tracks that can be readily observed in micromilled channels. A roughness of approximately 153 nm was created. Chloroform vapour-assisted bonding was used for simultaneous surface smoothing and bonding. A 30-s treatment with chloroform-vapour was able to reduce the surface roughness and smooth it to approximately 39 nm roughness. Subsequent bonding of multilayer PMMA-based microfluidic chips created a durable assembly, as shown by tensile testing. MDA-MB-231 breast cancer cells were cultured as multicellular tumour spheroids in the device and their characteristics evaluated using immunofluorescence staining. Spheroids could be successfully maintained for at least three weeks. They consisted of a characteristic hypoxic core, along with expression of the quiescence marker, p27kip1. This core was surrounded by a ring of Ki67-positive, proliferative cells. Overall, the method described represents a versatile approach to generate microfluidic devices compatible with biological applications.
Cytolytic leukotoxins of the repeat in toxin (RTX) family are large proteins excreted by gram-negative bacterial pathogens through the type 1 secretion system (T1SS). Due to low yields and poor stability in cultures of the original pathogens, it is useful to purify recombinant fatty-acylated RTX cytolysins from inclusion bodies produced in E. coli. Such preparations are, however, typically contaminated by high amounts of E. coli lipopolysaccharide (LPS or endotoxin). We report a simple procedure for purification of large amounts of biologically active and endotoxin-free RTX toxins. It is based on the common feature of RTX cytolysins that are T1SS-excreted as unfolded polypeptides and fold into a biologically active toxin only upon binding of calcium ions outside of the bacterial cell. Mimicking this process, the RTX proteins are solubilized from inclusion bodies with buffered 8 M urea, bound onto a suitable chromatographic medium under denaturing conditions and the contaminating LPS is removed through extensive on-column washes with buffers containing 6 to 8 M urea and 1% Triton X-100 or Triton X-114. Extensive on-column rinsing with 8 M urea buffer removes residual detergent and the eluted highly active RTX protein preparations then contain only trace amounts of LPS. The procedure is exemplified using four prototypic RTX cytolysins, the Bordetella pertussis CyaA and the hemolysins of Escherichia coli (HlyA), Kingella kingae (RtxA), and Actinobacillus pleuropneumoniae (ApxIA).
- MeSH
- Bacterial Proteins isolation & purification toxicity MeSH
- Cytotoxins isolation & purification toxicity MeSH
- Detergents chemistry MeSH
- Erythrocytes drug effects MeSH
- Escherichia coli metabolism MeSH
- Hemolysis MeSH
- Hemolysin Proteins isolation & purification toxicity MeSH
- Humans MeSH
- Lipopolysaccharides analysis MeSH
- Urea chemistry MeSH
- Cell Line, Tumor MeSH
- Octoxynol chemistry MeSH
- Sheep MeSH
- THP-1 Cells MeSH
- Cell Survival drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Naše výukové zkušenosti dokládají, že trojrozměrná představivost je jedním z nejobtížnějších aspektů ve výuce anatomie na lékařské fakultě. Rozhodli jsme se proto vytvořit soubor anatomických modelů, virtuálních i fyzických. Modely postupně zveřejňujeme na webových stránkách institucí, po uzavření projektu předpokládáme vydání DVD nosičů. Dalším podstatným výstupem naší práce je využití dat pro rapid prototyping a následnou výrobu anatomických modelů využitelných na praktických cvičeních.
Computer aided design (CAD) is a routine tool in engineering. It enables to make virtual 3D models of bodies. In biology and medicine the 3D visualisations are mostly done from CT and MR scans. Our teaching experience shows that 3D imagination is one of the most difficult aspects in anatomy education. We decided to create a database of 3D virtual and physical models. These virtual models will be put on the web sites of our departments subsequently. Moreover, these virtual models serve as an input for Rapid Prototyping systems.
- Keywords
- virtuální model, CAD, Rapid Prototyping,
- MeSH
- Models, Anatomic * MeSH
- Anatomy education MeSH
- Audiovisual Aids * MeSH
- Databases as Topic * MeSH
- Computer-Assisted Instruction methods MeSH
- Computer Simulation utilization MeSH
- Programmed Instructions as Topic MeSH
- Software MeSH
- Medical Informatics Applications MeSH
- Imaging, Three-Dimensional MeSH
- Geographicals
- Czech Republic MeSH
Článok predstavuje a hodnotí prelomové technologické postupy v ortodoncii: skutočný a pseudo 3D záznam, ich spracovanie a vizualizácie. Popisuje postup od celohlavového záznamu CBCT iCAT cez export do stereolitografického formátu (STL) až po jeho 3D tlač. Článok hodnotí možnosti manipulácie s týmto 3D záznamom a tiež sa detailnejšie sa venuje téme „rapid prototypingu" a perspektívam klinického využitia rôznych variant 3D tlače vrátane tlače biokompatibilnými materiálmi, napríklad titánom (AM/ EMB).
The article introduces and reviews revolutionary technologies and procedures in orthodontics: true ar pseudo 3D record, its processing and visualization. In particular, it describes procedure from CBCT iCATTM scanning through its export to stereolithographic (STL) format and final 3D print. In addition, the article reviews possibilities of 3D CBCT volume and brings the current view on rapid prototyping and perspectives of various 3D print techniques in clinical orthodontics including printing by biocompatible materials like titanium (AM/EBM).
... Kalibrační systém pro kontrolu parametrů obráběcích strojů 193 -- 10.6 Sondy a jejich použiti 193 -- 11 Rapid ... ... Prototyping (3D tiskárny): přínosy, užití a metody 197 -- 11.1 Rapid Prototyping 198 -- 11.2 Přínosy ... ... a užití metody Rapid Prototyping 198 -- 11.3 Metody RP 199 -- 11.4 Závěr 201 -- 12 Organizace a ekonomika ...
1. elektronické vydání 1 online zdroj (244 stran)
Problematika CNC, tedy číslicově řízených výrobních strojů, je tématem komplexní učebnice určené pro střední i vysoké školy a všechny, kdo mají zájem získat či prohloubit si vědomosti o CNC technice ve strojírenství, o principech CNC řízení, o způsobech programování i jejich vazbě na technologii.
BACKGROUND: Canine leishmaniasis (CanL) is a severe chronic disease caused by Leishmania infantum and transmitted by sand flies of which the main vector in the Western part of the Mediterranean basin is Phlebotomus perniciosus. Previously, an immunochromatographic test (ICT) was proposed to allow rapid evaluation of dog exposure to P. perniciosus. In the present study, we optimized the prototype and evaluated the detection accuracy of the ICT in field conditions. Possible cross-reactions with other hematophagous arthropods were also assessed. METHODOLOGY/PRINCIPAL FINDINGS: The ICT was optimized by expressing the rSP03B protein in a HEK293 cell line, which delivered an increased specificity (94.92%). The ICT showed an excellent reproducibility and inter-person reliability, and was optimized for use with whole canine blood which rendered an excellent degree of agreement with the use of serum. Field detectability of the ICT was assessed by screening 186 dogs from different CanL endemic areas with both the SGH-ELISA and the ICT, and 154 longitudinally sampled dogs only with the ICT. The ICT results corresponded to the SGH-ELISA for most areas, depending on the statistical measure used. Furthermore, the ICT was able to show a clear seasonal fluctuation in the proportion of bitten dogs. Finally, we excluded cross-reactions between non-vector species and confirmed favorable cross-reactions with other L. infantum vectors belonging to the subgenus Larroussius. CONCLUSIONS/SIGNIFICANCE: We have successfully optimized the ICT, now also suitable to be used with whole canine blood. The test is able to reflect the seasonal fluctuation in dog exposure and showed a good detectability in a field population of naturally exposed dogs, particularly in areas with a high seroprevalence of bitten dogs. Furthermore, our study showed the existence of favorable cross-reactions with other sand fly vectors thereby expanding its use in the field.
- MeSH
- Insect Vectors parasitology physiology MeSH
- Immunoassay methods MeSH
- Leishmania infantum physiology MeSH
- Leishmaniasis blood diagnosis parasitology veterinary MeSH
- Mice, Inbred BALB C MeSH
- Dog Diseases blood diagnosis parasitology MeSH
- Phlebotomus parasitology physiology MeSH
- Dogs MeSH
- Animals MeSH
- Check Tag
- Dogs MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
Cílem tohoto projektu bylo vytvořit rychlou, přesnou a efektivní metodu pro návrh a výrobu individuálních implantátů náhrad skeletálních defektů za použití vhodných biomateriálů, kterými lze nahradit defektní místo. Metoda spočívá ve zpracování a přenosu dat z dostupných diagnostických zobrazovacích metod (CT a MRI) a jejich transformaci do 3D geometrických modelů. Z takto vytvořených 3D modelů defektu lze provést s dostatečnou přesností tvarovou rekonstrukci defektu a následně i návrh individuálního implantátu. Model defektního místa pro potřeby plánování operačního zákroku lze vyrobit pomocí technologie rapid prototyping a vlastní implantát pomocí dostupných konvenčních CNC obráběcích metod. Pro výrobu individuálních náhrad jsou s ohledem na zdravotní a technologické požadavky dostupné materiály kovové (titan Ti6Al4V ELI) a plastové (PEEK, UHWMPE). Volba použitého materiálu musí respektovat velikost defektu, případné silové zatížení a způsob implantace.
The objective of this project was to create a fast, accurate and effective method for designing and production of individual skeletal defect replacement implants using suitable biomaterials, which can be used to replace the point of defect. The method consists in processing and transfer of data from available diagnostic imaging methods (CT and MRI), and their transformation into 3D geometric models. From 3D models of the defect produced in this way can be made an accurate shape reconstruction of the defect, and subsequently also a design of an individual implant. a model of the point of defect for planning the surgery can be produced using the rapid prototyping method and the implant itself using available conventional CNC machining methods. For producing individual replacements the available materials are – with regard to the health and technology requirements – metallic (titanium Ti6A14V ELI) and plastic (PEEK, UHWMPE). The choice of the used material must take into account the extent of the defect, possible force load and a way of implanting.
- MeSH
- Models, Anatomic MeSH
- Biocompatible Materials therapeutic use MeSH
- Diagnostic Imaging methods instrumentation utilization MeSH
- Financing, Organized MeSH
- Bone and Bones abnormalities surgery injuries MeSH
- Bone Substitutes therapeutic use MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods utilization MeSH
- Tomography, X-Ray Computed methods utilization MeSH
- Polyethylene therapeutic use MeSH
- Polymethyl Methacrylate therapeutic use MeSH
- Prostheses and Implants trends utilization MeSH
- Titanium therapeutic use MeSH
- Imaging, Three-Dimensional methods instrumentation utilization MeSH
- Check Tag
- Humans MeSH
- Publication type
- Case Reports MeSH