Using Brassica napus roots we observed statistically significant increase in alternative respiratory pathway in response to exogenous 24-epibrassinolide (EBL) under optimal conditions and salinity. Also we observed activation of phospholipid signaling under the same conditions in response to EBL by measuring levels of lipid second messengers - diacylglycerol (DAG) and phosphatidic acid (PA). We found that brassinosteroids cause closure of stomata in isolated leaf disks while inhibitors of alternative oxidase cancelled these effects. This study demonstrates that BRs activate total respiration rate, alternative respiratory pathway, production of PA and DAG, stimulate stomata closure and growth under optimal conditions and salinity. Also, specific inhibitor of brassinosteroids biosynthesis decreased alternative respiratory pathway and production of lipid messengers in rape plants.
- MeSH
- Brassica napus drug effects enzymology metabolism MeSH
- Brassinosteroids pharmacology MeSH
- Diglycerides metabolism MeSH
- Plant Roots drug effects enzymology metabolism MeSH
- Phosphatidic Acids metabolism MeSH
- Plant Leaves drug effects enzymology metabolism MeSH
- Mitochondrial Proteins metabolism MeSH
- Oxidoreductases metabolism MeSH
- Plant Stomata drug effects enzymology metabolism MeSH
- Plant Proteins metabolism MeSH
- Steroids, Heterocyclic pharmacology MeSH
- Publication type
- Journal Article MeSH
Guard cells on the leaf epidermis regulate stomatal opening for gas exchange between plants and the atmosphere, allowing a balance between photosynthesis and transpiration. Given that guard cells possess several characteristics of sink tissues, their metabolic activities should largely depend on mesophyll-derived sugars. Early biochemical studies revealed sugar uptake into guard cells. However, the transporters that are involved and their relative contribution to guard cell function are not yet known. Here, we identified the monosaccharide/proton symporters Sugar Transport Protein 1 and 4 (STP1 and STP4) as the major plasma membrane hexose sugar transporters in the guard cells of Arabidopsis thaliana. We show that their combined action is required for glucose import to guard cells, providing carbon sources for starch accumulation and light-induced stomatal opening that are essential for plant growth. These findings highlight mesophyll-derived glucose as an important metabolite connecting stomatal movements with photosynthesis.
Element content and expression of genes of interest on single cell types, such as stomata, provide valuable insights into their specific physiology, improving our understanding of leaf gas exchange regulation. We investigated how far differences in stomatal conductance (gs ) can be ascribed to changes in guard cells functioning in amphistomateous leaves. gs was measured during the day on both leaf sides, on well-watered and drought-stressed trees (two Populus euramericana Moench and two Populus nigra L. genotypes). In parallel, guard cells were dissected for element content and gene expressions analyses. Both were strongly arranged according to genotype, and drought had the lowest impact overall. Normalizing the data by genotype highlighted a structure on the basis of leaf sides and time of day both for element content and gene expression. Guard cells magnesium, phosphorus, and chlorine were the most abundant on the abaxial side in the morning, where gs was at the highest. In contrast, genes encoding H+ -ATPase and aquaporins were usually more abundant in the afternoon, whereas genes encoding Ca2+ -vacuolar antiporters, K+ channels, and ABA-related genes were in general more abundant on the adaxial side. Our work highlights the unique physiology of each leaf side and their analogous rhythmicity through the day.
- MeSH
- Genotype MeSH
- DNA, Complementary genetics isolation & purification MeSH
- Plant Leaves genetics metabolism MeSH
- Electron Probe Microanalysis MeSH
- Droughts MeSH
- Populus classification genetics metabolism MeSH
- Proton-Translocating ATPases genetics metabolism MeSH
- Plant Stomata genetics metabolism MeSH
- Gene Expression Regulation, Plant MeSH
- RNA, Plant genetics isolation & purification MeSH
- Plant Proteins genetics metabolism MeSH
- Trees genetics metabolism MeSH
- Plant Transpiration physiology MeSH
- Water physiology MeSH
- Plant Development MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND AND AIMS: The idea that genome (size) evolution in eukaryotes could be driven by environmental factors is still vigorously debated. In extant plants, genome size correlates positively with stomatal size, leading to the idea that conditions enabling the existence of large stomata in fossil plants also supported growth of their genome size. We test this inductive assumption in drought-adapted, prostrate-leaved Cape (South Africa) geophytes where, compared with their upright-leaved geophytic ancestors, stomata develop in a favourably humid microclimate formed underneath their leaves. METHODS: Stomatal parameters (leaf cuticle imprints) and genome size (flow cytometry) were measured in 16 closely related geophytic species pairs from seven plant families. In each pair, representing a different genus, we contrasted a prostrate-leaved species with its upright-leaved phylogenetic relative, the latter whose stomata are exposed to the ambient arid climate. KEY RESULTS: Except for one, all prostrate-leaves species had larger stomata, and in 13 of 16 pairs they also had larger genomes than their upright-leaved relatives. Stomatal density and theoretical maximum conductance were less in prostrate-leaved species with small guard cells (<1 pL) but showed no systematic difference in species pairs with larger guard cells (>1 pL). Giant stomata were observed in the prostrate-leaved Satyrium bicorne (89-137 µm long), despite its relatively small genome (2C = 9 Gbp). CONCLUSIONS: Our results imply that climate, through selection on stomatal size, might be able to drive genome size evolution in plants. The data support the idea that plants from 'greenhouse' geological periods with large stomata might have generally had larger genome sizes when compared with extant plants, though this might not have been solely due to higher atmospheric CO2 in these periods but could also have been due to humid conditions prevailing at fossil deposit sites.
- MeSH
- Genome Size MeSH
- Phylogeny MeSH
- Genome, Plant genetics MeSH
- Plant Leaves MeSH
- Plant Stomata genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- South Africa MeSH
BACKGROUND: The southern African Oxalis radiation is extremely morphologically variable. Despite recent progress in the phylogenetics of the genus, there are few morphological synapomorphies supporting DNA-based clades. Leaflet anatomy can provide an understudied and potentially valuable source of information on the evolutionary history and systematics of this lineage. Fifty-nine leaflet anatomical traits of 109 southern African Oxalis species were assessed in search of phylogenetically significant characters that delineate clades. RESULTS: A combination of 6 leaflet anatomical traits (stomatal position, adaxial epidermal cells, abaxial epidermal cells, mesophyll, sheath around vascular tissue, degree of leaflet conduplication) clearly support various clades defined by previous DNA-based phylogenetic work. Other, mostly continuous leaflet anatomical traits were highly variable and showed less phylogenetic pattern. CONCLUSIONS: Major and unexpected findings include the transition from ancestral hypostomatic leaflets to adaxially-located stomata in the vast majority of southern African Oxalis, the loss of semi-swollen AB epidermal cells and the gain of swollen adaxial and abaxial epidermal cells in selected clades, and multiple changes from ancestral bifacial mesophyll to isobilateral or homogenous mesophyll types. The information gathered in this study will aid in the taxonomic revision of this speciose member of the Greater Cape Floristic Region and provide a basis for future hypotheses regarding its radiation.
- MeSH
- Biological Evolution MeSH
- Plant Vascular Bundle cytology MeSH
- Gene Duplication MeSH
- Phenotype MeSH
- Phylogeny * MeSH
- Quantitative Trait, Heritable MeSH
- Plant Leaves anatomy & histology cytology genetics MeSH
- Mesophyll Cells cytology MeSH
- Oxalidaceae anatomy & histology genetics MeSH
- Plant Stomata cytology MeSH
- Trichomes cytology MeSH
- Publication type
- Journal Article MeSH
BACKGROUND AND AIMS: Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal. METHODS: Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. (13)C abundance (δ(13)C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints. KEY RESULTS: SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling. CONCLUSIONS: It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci-SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport.
- MeSH
- Arabidopsis cytology drug effects MeSH
- Fagus cytology drug effects MeSH
- Dehydration MeSH
- Helianthus cytology drug effects MeSH
- Cotyledon drug effects physiology MeSH
- Lepidium cytology drug effects MeSH
- Carbon Dioxide pharmacology MeSH
- Cell Count MeSH
- Plant Stomata cytology drug effects MeSH
- Environment MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND AND AIMS: Genome size is known to affect various plant traits such as stomatal size, seed mass, and flower or shoot phenology. However, these associations are not well understood for species with very large genomes, which are laregly represented by geophytic plants. No detailed associations are known between DNA base composition and genome size or species ecology. METHODS: Genome sizes and GC contents were measured in 219 geophytes together with tentative morpho-anatomical and ecological traits. KEY RESULTS: Increased genome size was associated with earliness of flowering and tendency to grow in humid conditions, and there was a positive correlation between an increase in stomatal size in species with extremely large genomes. Seed mass of geophytes was closely related to their ecology, but not to genomic parameters. Genomic DNA GC content showed a unimodal relationship with genome size but no relationship with species ecology. CONCLUSIONS: Evolution of genome size in geophytes is closely related to their ecology and phenology and is also associated with remarkable changes in DNA base composition. Although geophytism together with producing larger cells appears to be an advantageous strategy for fast development of an organism in seasonal habitats, the drought sensitivity of large stomata may restrict the occurrence of geophytes with very large genomes to regions not subject to water stress.
- MeSH
- Genome Size MeSH
- DNA, Plant analysis genetics MeSH
- Ecology MeSH
- Ecosystem MeSH
- Genome, Plant MeSH
- Evolution, Molecular MeSH
- Plant Stomata anatomy & histology MeSH
- Seasons MeSH
- Plants anatomy & histology genetics MeSH
- Seeds anatomy & histology MeSH
- Base Composition MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The initiation of stomata, microscopic valves in the epidermis of higher plants that control of gas exchange, requires a co-ordinated sequence of asymmetric and symmetric divisions, which is under tight environmental and developmental control. Arabidopsis leaves grown under elevated photosynthetic photon flux density have a higher density of stomata. STOMAGEN encodes an epidermal patterning factor produced in the mesophyll, and our observations indicated that elevated photosynthetic irradiation stimulates STOMAGEN expression. Our analysis of gain and loss of function of STOMAGEN further detailed its function as a positive regulator of stomatal formation on both sides of the leaf, not only in terms of stomatal density across the leaf surface but also in terms of their stomatal index. STOMAGEN function was rate limiting for the light response of the stomatal lineage in the adaxial epidermis. Mutants in pathways that regulate stomatal spacing in the epidermis and have elevated stomatal density, such as stomatal density and distribution (sdd1) and too many mouth alleles, displayed elevated STOMAGEN expression, suggesting that STOMAGEN is either under the direct control of these pathways or is indirectly affected by stomatal patterning, suggestive of a feedback mechanism. These observations support a model in which changes in levels of light irradiation are perceived in the mesophyll and control the production of stomata in the epidermis by mesophyll-produced STOMAGEN, and whereby, conversely, stomatal patterning, either directly or indirectly, influences STOMAGEN levels.
- MeSH
- Arabidopsis genetics growth & development metabolism radiation effects MeSH
- Photosynthesis MeSH
- Plant Leaves growth & development metabolism radiation effects MeSH
- Arabidopsis Proteins genetics metabolism MeSH
- Plant Stomata genetics growth & development metabolism radiation effects MeSH
- Gene Expression Regulation, Plant radiation effects MeSH
- Signal Transduction MeSH
- Light MeSH
- Gene Expression Regulation, Developmental radiation effects MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Root-hemiparasitic plants of the genus Rhinanthus acquire resources through a water-wasting physiological strategy based on high transpiration rate mediated by the accumulation of osmotically active compounds and constantly open stomata. Interestingly, they were also documented to withstand moderate water stress which agrees with their common occurrence in rather dry habitats. Here, we focused on the water-stress physiology of Rhinanthus alectorolophus by examining gas exchange, water relations, stomatal density, and biomass production and its stable isotope composition in adult plants grown on wheat under contrasting (optimal and drought-inducing) water treatments. We also tested the effect of water stress on the survival of Rhinanthus seedlings, which were watered either once (after wheat sowing), twice (after wheat sowing and the hemiparasite planting) or continuously (twice and every sixth day after that). Water shortage significantly reduced seedling survival as well as the biomass production and gas exchange of adult hemiparasites. In spite of that drought-stressed and even wilted plants from both treatments still considerably photosynthesized and transpired. Strikingly, low-irrigated plants exhibited significantly elevated photosynthetic rate compared with high-irrigated plants of the same water status. This might relate to biochemical adjustments of these plants enhancing the resource uptake from the host. Moreover, low-irrigated plants did not acclimatize to water stress by lowering their osmotic potential, perhaps due to the capability to tolerate drought without such an adjustment, as their osmotic potential at full turgor was already low. Contrary to results of previous studies, hemiparasites seem to close their stomata in response to severe drought stress and this happens probably passively after turgor is lost in guard cells. The physiological traits of hemiparasites, namely the low osmotic potential associated with their parasitic lifestyle and the ability to withstand drought and recover from the wilting likely enable them to grow in dry habitats. However, the absence of osmotic adjustment of adults and sensitivity of seedlings to severe drought stress demonstrated here may result in a substantial decline of the hemiparasitic species with ongoing climate change.
- MeSH
- Biomass MeSH
- Dehydration MeSH
- Photosynthesis MeSH
- Stress, Physiological physiology MeSH
- Plant Roots MeSH
- Plant Leaves anatomy & histology physiology MeSH
- Orobanchaceae anatomy & histology physiology MeSH
- Plant Stomata anatomy & histology physiology MeSH
- Seedlings anatomy & histology physiology MeSH
- Plant Transpiration MeSH
- Water * metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Stomatal ontogenesis, patterning, and function are hallmarks of environmental plant adaptation, especially to conditions limiting plant growth, such as elevated temperatures and reduced water availability. The specification and distribution of a stomatal cell lineage and its terminal differentiation into guard cells require a master regulatory protein phosphorylation cascade involving the YODA mitogen-activated protein kinase kinase kinase. YODA signaling results in the activation of MITOGEN-ACTIVATED PROTEIN KINASEs (MPK3 and MPK6), which regulate transcription factors, including SPEECHLESS (SPCH). Here, we report that acute heat stress affects the phosphorylation and deactivation of SPCH and modulates stomatal density. By using complementary molecular, genetic, biochemical, and cell biology approaches, we provide solid evidence that HEAT SHOCK PROTEINS 90 (HSP90s) play a crucial role in transducing heat-stress response through the YODA cascade. Genetic studies revealed that YODA and HSP90.1 are epistatic, and they likely function linearly in the same developmental pathway regulating stomata formation. HSP90s interact with YODA, affect its cellular polarization, and modulate the phosphorylation of downstream targets, such as MPK6 and SPCH, under both normal and heat-stress conditions. Thus, HSP90-mediated specification and differentiation of the stomatal cell lineage couples stomatal development to environmental cues, providing an adaptive heat stress response mechanism in plants.
- MeSH
- Arabidopsis physiology MeSH
- Cell Differentiation MeSH
- Cell Division MeSH
- Cell Lineage MeSH
- Epigenesis, Genetic MeSH
- Phosphorylation MeSH
- Cotyledon cytology MeSH
- MAP Kinase Kinase Kinases genetics metabolism MeSH
- Mitogen-Activated Protein Kinase Kinases metabolism MeSH
- Mitogen-Activated Protein Kinases metabolism MeSH
- Mutation MeSH
- Arabidopsis Proteins genetics metabolism MeSH
- HSP90 Heat-Shock Proteins genetics metabolism MeSH
- Plant Stomata cytology growth & development metabolism MeSH
- Heat-Shock Response * MeSH
- Gene Expression Regulation, Plant MeSH
- Signal Transduction MeSH
- Basic Helix-Loop-Helix Transcription Factors metabolism MeSH
- Protein Binding MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH