bootstrap
Dotaz
Zobrazit nápovědu
Texts in statistical science
2nd ed. xix, 399 s.
1st ed. xvii, 438 s., grafy, tab.
1st ed. xvii, 406 s.
This paper focuses on wrapper-based feature selection for a 1-nearest neighbor classifier. We consider in particular the case of a small sample size with a few hundred instances, which is common in biomedical applications. We propose a technique for calculating the complete bootstrap for a 1-nearest-neighbor classifier (i.e., averaging over all desired test/train partitions of the data). The complete bootstrap and the complete cross-validation error estimate with lower variance are applied as novel selection criteria and are compared with the standard bootstrap and cross-validation in combination with three optimization techniques - sequential forward selection (SFS), binary particle swarm optimization (BPSO) and simplified social impact theory based optimization (SSITO). The experimental comparison based on ten datasets draws the following conclusions: for all three search methods examined here, the complete criteria are a significantly better choice than standard 2-fold cross-validation, 10-fold cross-validation and bootstrap with 50 trials irrespective of the selected output number of iterations. All the complete criterion-based 1NN wrappers with SFS search performed better than the widely-used FILTER and SIMBA methods. We also demonstrate the benefits and properties of our approaches on an important and novel real-world application of automatic detection of the subthalamic nucleus.
- MeSH
- teoretické modely MeSH
- velikost vzorku * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
Within the framework of continuous pharmaceutical manufacturing, we are interested in statistical modeling of the initial behavior of the production line. Assuming a gradually changing sequence of a suitable product quality characteristic (e.g., the content uniformity), we estimate the so-called point-of-stabilization (PoSt) and construct corresponding confidence regions based on appropriate asymptotic distributions and bootstrap. We investigate linear, quadratic, and nonlinear gradual change models both in homoscedastic and heteroscedastic setup. We propose a new nonlinear Emax gradual change model and show that it is applicable even if the true model is linear. Asymptotic distribution of the PoSt estimator is known only in a homoscedastic linear and quadratic model and, therefore, bootstrap approximations are used to construct one-sided PoSt confidence intervals.
- MeSH
- interval spolehlivosti MeSH
- léčivé přípravky MeSH
- lidé MeSH
- nelineární dynamika * MeSH
- statistické modely * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Seasonal peaks in hospitalizations for mood disorders and schizophrenia are well recognized and often replicated. The within-subject tendency to experience illness episodes in the same season, that is, seasonal course, is much less established, as certain individuals may temporarily meet criteria for seasonal course purely by chance. AIMS: In this population, prospective cohort study, we investigated whether between and within-subject seasonal patterns of hospitalizations occurred more frequently than would be expected by chance. METHODS: Using a compulsory, standardized national register of hospitalizations, we analyzed all admissions for mood disorders and schizophrenia in the Czech Republic between 1994 and 2013. We used bootstrap tests to compare the observed numbers of (a) participants with seasonal/regular course and (b) hospitalizations in individual months against empirical distributions obtained by simulations. RESULTS: Among 87 184 participants, we found uneven distribution of hospitalizations, with hospitalization peaks for depression in April and November (X2 (11) = 363.66, P < .001), for mania in August (X2 (11) = 50.36, P < .001) and for schizophrenia in June (X2 (11) = 70.34, P < .001). Significantly more participants than would be expected by chance, had two subsequent rehospitalizations in the same 90 days in different years (7.36%, bootstrap P < .01) or after a regular, but non-seasonal interval (6.07%, bootstrap P < .001). The proportion of participants with two consecutive hospitalizations in the same season was below chance level (7.06%). CONCLUSIONS: Psychiatric hospitalizations were unevenly distributed throughout the year (cross-sectional seasonality), with evidence for regularity, but not seasonality of hospitalizations within subjects. Our data do not support the validity of seasonal pattern specifier. Season may be a general risk factor, which increases the risk of hospitalizations across psychiatric participants.
A drug dissolution profile is one of the most critical dosage form characteristics with immediate and controlled drug release. Comparing the dissolution profiles of different pharmaceutical products plays a key role before starting the bioequivalence or stability studies. General recommendations for dissolution profile comparison are mentioned by the EMA and FDA guidelines. However, neither the EMA nor the FDA provides unambiguous instructions for comparing the dissolution curves, except for calculating the similarity factor f2. In agreement with the EMA and FDA strategy for comparing the dissolution profiles, this manuscript provides an overview of suitable statistical methods (CI derivation for f2 based on bootstrap, CI derivation for the difference between reference and test samples, Mahalanobis distance, model-dependent approach and maximum deviation method), their procedures and limitations. However, usage of statistical approaches for the above-described methods can be met with difficulties, especially when combined with the requirement of practice for robust and straightforward techniques for data evaluation. Therefore, the bootstrap to derive the CI for f2 or CI derivation for the difference between reference and test samples was selected as the method of choice.
- Publikační typ
- časopisecké články MeSH