dwarf phenotype
Dotaz
Zobrazit nápovědu
KEY MESSAGE: Multiple origins of Indian dwarf wheat were due to two mutations targeting the same TREE domain of a GSK3-like kinase, and these mutations confer to enhanced drought tolerance and increased phosphate and nitrogen accumulation for adaptation to the dry climate of Indian and Pakistan. Indian dwarf wheat, featured by the short stature, erect leaves, dense spikes, and small, spherical grains, was a staple crop in India and Pakistan from the Bronze Age until the early 1900s. These morphological features are controlled by a single locus Sphaerococcum 1 (S1), but the genetic identity of the locus and molecular mechanisms underlying the selection of this wheat type are unknown. In this study, we showed that the origin of Indian dwarf wheat was due to two independent missense mutations targeting the conserved TREE domain of a GSK3-like kinase, which is homologous to the Arabidopsis BIN2 protein, a negative regulator in brassinosteroid signaling. The S1 protein is involved in brassinosteroid signaling by physical interaction with the wheat BES1/BZR1 proteins. The dwarf alleles are insensitive to brassinosteroid, upregulates brassinosteroid biosynthetic genes, significantly enhanced drought tolerance, facilitated phosphate accumulation, and increased high molecular weight glutenins. It is the enhanced drought tolerance and accumulation of nitrogen and phosphate that contributed to the adaptation of such a small-grain form of wheat to the dry climate of India and Pakistan. Thus, our research not only identified the genetic events underlying the origin of the Indian dwarf wheat, but also revealed the function of brassinosteroid in the regulation of drought tolerance, phosphate homeostasis, and grain quality.
- MeSH
- fenotyp MeSH
- fosfáty metabolismus MeSH
- fosforylace MeSH
- geneticky modifikované rostliny genetika fyziologie MeSH
- kinasa 3 glykogensynthasy genetika metabolismus MeSH
- mutace * MeSH
- období sucha * MeSH
- pšenice genetika fyziologie MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Dominantly inherited mutations in COMP gene encoding cartilage oligomeric matrix protein may cause two dwarfing skeletal dysplasias, milder multiple epiphyseal dysplasia (MED) and more severe pseudoachondroplasia (PSACH). We studied the phenotype and X-rays of 11 patients from 5 unrelated families with different COMP mutations. Whole exome and/or Sangers sequencing were used for molecular analyses. Four to ten X-ray images of hands hips, knees or spine were available for each patient for retrospective analyses. Eight patients with MED have mutation c.1220G>A and 3 children with PSACH mutations c.1359C>A, c.1336G>A, or the novel mutation c.1126G>T in COMP. Progressive failure in growth developed in all patients from early childhood and resulted in short stature < 3rd percentile in 7 patients and very short stature < 1st percentile in four. Most patients had joint pain since childhood, severe stiffness in shoulders and elbows but increased mobility in wrists. Six children had bowlegs and two had knock knees. In all patients, X-rays of hands, hips and knees showed progressive, age-dependent skeletal involvement more pronounced in the epiphyses of long rather than short tubular bones. Anterior elongation and biconvex configuration of vertebral bodies were more conspicuous for kids. Six children had correction of knees and two adults had hip replacement. Skeletal and joint impairment in patients with MED and PSACH due to COMP mutation start in early childhood. Although the clinical severity is mutation and age dependent, many symptoms represent a continuous phenotypic spectrum between both diseases. Most patients may benefit from orthopaedic surgeries.
- MeSH
- achondroplazie MeSH
- chrupavkový oligomerní matrixový protein * genetika MeSH
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- matriliny genetika MeSH
- mutace * MeSH
- osteochondrodysplazie * diagnostické zobrazování genetika MeSH
- předškolní dítě MeSH
- retrospektivní studie MeSH
- stupeň závažnosti nemoci MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- dítě MeSH
- fenotyp MeSH
- homeodoménové proteiny genetika MeSH
- hypofýza růst a vývoj metabolismus MeSH
- hypofyzární nanismus genetika metabolismus patofyziologie MeSH
- jaderné proteiny genetika MeSH
- lidé MeSH
- lidský růstový hormon genetika MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mutace * MeSH
- mutační analýza DNA MeSH
- předškolní dítě MeSH
- prospektivní studie MeSH
- protein Gli2 s motivem zinkových prstů genetika MeSH
- proteiny s homeodoménou LIM genetika MeSH
- receptory hormonů regulujících hypofyzární hormony MeSH
- receptory neuropeptidů MeSH
- transkripční faktor Pit-1 genetika MeSH
- transkripční faktory SOXB1 genetika MeSH
- transkripční faktory genetika MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- pozorovací studie MeSH
The applications of semi-dwarf genes such as sd1 and Rht1 in rice and wheat resulted in the first "green revolution" in the 1960s. However, such semi-dwarf genes that can efficiently reduce plant stature and have few negative yield traits have not yet been identified in maize. In this study, a new allele of Brachytic2 gene (qpa1) encoding P-glycoprotein was rapidly fine-mapped using a modified method. The qpa1, containing a 241-bp deletion in the last exon, had no negative effect on yield, but greatly modified the plant architecture including significantly reduced plant height and ear height, increased stalk diameter and erected leaf. A common variant similar to maize qpa1 was also present in the sorghum orthologous dw3 locus. Comparative RNA-seq analysis next showed 99 differentially co-expressed genes affected by Br2 in maize and dw3 in sorghum, including four plant height genes D3, BAK1, Actin7 and Csld1, which are involved in gibberellin and brassinosteroid biosynthesis, auxin transport and cellulose synthesis. The qpa1 can be applied to efficiently modify plant stature in maize and in combination with D3, BAK1, Actin7, Csld1 and the other 95 differentially co-expressed genes, can be edited using new genomic editing tools for further applications and studies.
- MeSH
- alely * MeSH
- chromozomy rostlin MeSH
- fenotyp * MeSH
- genetické asociační studie * MeSH
- genom rostlinný MeSH
- genomika metody MeSH
- inbreeding MeSH
- kukuřice setá genetika MeSH
- kvantitativní znak dědičný MeSH
- lokus kvantitativního znaku MeSH
- mapování chromozomů MeSH
- rostlinné geny * MeSH
- sekvenční analýza RNA MeSH
- šlechtění rostlin MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The role of chromosome changes in speciation remains a debated topic, although demographic conditions associated with divergence should promote their appearance. We tested a potential relationship between chromosome changes and speciation by studying two Lake Whitefish (Coregonus clupeaformis) lineages that recently colonized postglacial lakes following allopatry. A dwarf limnetic species evolved repeatedly from the normal benthic species, becoming reproductively isolated. Lake Whitefish hybrids experience mitotic and meiotic instability, which may result from structurally divergent chromosomes. Motivated by this observation, we test the hypothesis that chromosome organization differs between Lake Whitefish species pairs using cytogenetics. While chromosome and fundamental numbers are conserved between the species (2n = 80, NF = 98), we observe extensive polymorphism of subtle karyotype traits. We describe intrachromosomal differences associated with heterochromatin and repetitive DNA, and test for parallelism among three sympatric species pairs. Multivariate analyses support the hypothesis that differentiation at the level of subchromosomal markers mostly appeared during allopatry. Yet we find no evidence for parallelism between species pairs among lakes, consistent with colonization effect or postcolonization differentiation. The reported intrachromosomal polymorphisms do not appear to play a central role in driving adaptive divergence between normal and dwarf Lake Whitefish. We discuss how chromosomal differentiation in the Lake Whitefish system may contribute to the destabilization of mitotic and meiotic chromosome segregation in hybrids, as documented previously. The chromosome structures detected here are still difficult to sequence and assemble, demonstrating the value of cytogenetics as a complementary approach to understand the genomic bases of speciation.
- MeSH
- chromozomy genetika MeSH
- fenotyp MeSH
- heterochromatin genetika MeSH
- jezera MeSH
- populační genetika * MeSH
- Salmonidae genetika MeSH
- sympatrie * MeSH
- vznik druhů (genetika) * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The phosphate transporter PHT4;6 locates to the trans-Golgi compartment, and its impaired activity causes altered intracellular phosphate compartmentation, leading to low cytosolic Pi levels, a blockage of Golgi-related processes such as protein glycosylation and hemicellulose biosynthesis, and a dwarf phenotype. However, it was unclear whether altered Pi homeostasis in pht4;6 mutants causes further cellular problems, typically associated with limited phosphate availability. Here we report that pht4;6 mutants exhibit a markedly increased disposition to induce dark-induced senescence. In control experiments, in which pht4;6 mutants and wild-type plants developed similarly, we confirmed that accelerated dark-induced senescence in mutants is not a 'pleiotropic' process associated with the dwarf phenotype. In fact, accelerated dark-induced senescence in pht4;6 mutants correlates strongly with increased levels of toxic NH4 (+) and higher sensitivity to ammonium, which probably contribute to the inability of pht4;6 mutants to recover from dark treatment. Experiments with modified levels of either salicylic acid (SA) or trans-zeatin (tZ) demonstrate that altered concentrations of these compounds in pht4;6 plants act as major cellular mediators for dark-induced senescence. This conclusion gained further support from the notion that the expression of the pht4;6 gene is, in contrast to genes coding for major phosphate importers, substantially induced by tZ. Taken together, our findings point to a critical function of PHT4;6 to control cellular phosphate levels, in particular the cytosolic Pi availability, required to energize plant primary metabolism for proper plant development. Phosphate and its allocation mediated by PHT4;6 is critical to prevent onset of dark-induced senescence.
- MeSH
- Arabidopsis metabolismus fyziologie MeSH
- chlorofyl metabolismus MeSH
- cytokininy metabolismus MeSH
- Golgiho aparát metabolismus fyziologie MeSH
- proteiny huseníčku fyziologie MeSH
- proteiny přenášející fosfát fyziologie MeSH
- regulace genové exprese u rostlin fyziologie MeSH
- stárnutí fyziologie MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The genus Phodopus consists of three species--P. campbelli (Pc), P. sungorus (Ps), and P. roborovskii (Pr). They inhabit steppes, semi-deserts, and deserts in continental Asia with a climate changing from a moderate to a hard Continental one with extreme daily and seasonal variations. These different environmental challenges are likely to have consequences for hamsters' morphology, physiology, and behavior. Hamsters of all three species were investigated during the course of the year in the laboratory though using natural lighting and temperature conditions. Motor activity and body temperature were measured continuously, and body mass, testes size, and fur coloration every 1-2 weeks. With regard to the pattern of activity, nearly twice as many Pc as Ps hamsters (25 vs. 14%) failed to respond to changes of photoperiod, whereas all Pr hamsters did. Body mass and testes size were high in summer and low in winter, with the biggest relative change in Ps and the lowest in Pr hamsters. Changes of fur coloration were found in Ps hamsters only. All responding animals (that is excluding Pr), exhibited regular torpor bouts during the short winter days. In autumn, seasonal changes started considerably earlier in Ps hamsters. To investigate the putative causes of these different time courses, a further experiment was performed, to identify the critical photoperiod. Hamsters were kept for 10 weeks under different photoperiods, changing from 16 to 8 h light per day. Motor activity was recorded continuously, to identify responding and non-responding animals. Body mass was measured at the beginning and the end of the experiment, testes mass only at the end. The critical photoperiod was found to be similar in all three species. Though in a further experiment, Pc and Pr hamsters showed a delayed response, whereas the changes in Ps hamsters started immediately following transfer to short-day conditions. The results show that interspecific differences in seasonal adaptation exist, even between the closely related Ps and Pc hamsters, possibly due to different conditions in their natural habitat. Also, the impact of environmental factors like climatic conditions and food resources may differ between species.
- MeSH
- barva vlasů MeSH
- časové faktory MeSH
- cykly aktivity MeSH
- druhová specificita MeSH
- ekosystém * MeSH
- fotoperioda MeSH
- fyziologická adaptace MeSH
- křečci praví MeSH
- Phodopus růst a vývoj fyziologie MeSH
- pohybová aktivita MeSH
- roční období * MeSH
- tělesná hmotnost MeSH
- teplota MeSH
- termoregulace MeSH
- testis růst a vývoj MeSH
- velikost orgánu MeSH
- vlasy, chlupy MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Polar auxin transport (PAT) plays key roles in the regulation of plant growth and development. Flavonoids have been implicated in the inhibition of PAT. However, the active flavonoid derivative(s) involved in this process in vivo has not yet been identified. Here, we provide evidence that a specific flavonol bis-glycoside is correlated with shorter plant stature and reduced PAT. Specific flavonoid-biosynthetic or flavonoid-glycosylating steps were genetically blocked in Arabidopsis thaliana. The differential flavonol patterns established were analyzed by high-performance liquid chromatography (HPLC) and related to altered plant stature. PAT was monitored in stem segments using a radioactive [(3)H]-indole-3-acetic acid tracer. The flavonoid 3-O-glucosyltransferase mutant ugt78d2 exhibited a dwarf stature in addition to its altered flavonol glycoside pattern. This was accompanied by reduced PAT in ugt78d2 shoots. The ugt78d2-dependent growth defects were flavonoid dependent, as they were rescued by genetic blocking of flavonoid biosynthesis. Phenotypic and metabolic analyses of a series of mutants defective at various steps of flavonoid formation narrowed down the potentially active moiety to kaempferol 3-O-rhamnoside-7-O-rhamnoside. Moreover, the level of this compound was negatively correlated with basipetal auxin transport. These results indicate that kaempferol 3-O-rhamnoside-7-O-rhamnoside acts as an endogenous PAT inhibitor in Arabidopsis shoots.
Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID-INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroid-related genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars.
- MeSH
- alely MeSH
- aminokyseliny MeSH
- brassinosteroidy metabolismus MeSH
- fenotyp MeSH
- ječmen (rod) genetika růst a vývoj metabolismus MeSH
- jedlá semena MeSH
- mapování chromozomů MeSH
- modely strukturální MeSH
- molekulární sekvence - údaje MeSH
- mutace MeSH
- počasí MeSH
- počítačová simulace MeSH
- regulace genové exprese u rostlin * MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- signální transdukce MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Growth is the best visible sign of plant comfort. If plants are under stress, a difference in growth with control conditions can indicate that something is going wrong (or better). Phytohormones such as auxin, cytokinins, brassinosteroids or giberellins, are important growth regulators and their role in plant growth was extensively studied. On the other hand the role of salicylic acid (SA), a phytohormone commonly connected with plant defense responses, in plant growth is under-rated. However, studies with SA-overaccumulating mutants directly showed an influence of SA on plant growth. Recently we characterized an Arabidopsis SA-overaccumulating mutant impaired in phosphatidylinositol-4-kinases (pi4kIIIβ1β2). This mutant is dwarf. The crossing with mutants impaired in SA signaling revealed that pi4kIIIβ1β2 stunted rosette is due to high SA, while the short root length is not. This brings into evidence that upper and lower parts of the plants, even though they may share common phenotypes, are differently regulated.
- MeSH
- 1-fosfatidylinositol-4-kinasa genetika MeSH
- Arabidopsis anatomie a histologie enzymologie MeSH
- kořeny rostlin anatomie a histologie MeSH
- kyselina salicylová metabolismus MeSH
- listy rostlin anatomie a histologie MeSH
- mutace genetika MeSH
- proteiny huseníčku genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH