Human cornea is covered by an aqueous tear film, and the outermost layer of the tear film is coated by lipids. This so-called tear film lipid layer (TFLL) reduces surface tension of the tear film and helps with the film re-spreading after blinks. Alterations of tear lipids composition and properties are related to dry eye syndrome. Therefore, unveiling structural and functional properties of TFLL is necessary for understanding tear film function under both normal and pathological conditions. Key properties of TFLL, such as resistance against high lateral pressures and ability to spread at the tear film surface, are directly related to the chemical identity of TFLL lipids. Hence, a molecular-level description is required to get better insight into TFLL properties. Molecular dynamics simulations are particularly well suited for this task and they were recently used for investigating TFLL. The present review discusses molecular level organization and properties of TFLL as seen by these simulation studies. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Background: Structured illumination microscopy (SIM) is a family of methods in optical fluorescence microscopy that can achieve both optical sectioning and super-resolution effects. SIM is a valuable method for high-resolution imaging of fixed cells or tissues labeled with conventional fluorophores, as well as for imaging the dynamics of live cells expressing fluorescent protein constructs. In SIM, one acquires a set of images with shifting illumination patterns. This set of images is subsequently treated with image analysis algorithms to produce an image with reduced out-of-focus light (optical sectioning) and/or with improved resolution (super-resolution). Findings: Five complete, freely available SIM datasets are presented including raw and analyzed data. We report methods for image acquisition and analysis using open-source software along with examples of the resulting images when processed with different methods. We processed the data using established optical sectioning SIM and super-resolution SIM methods and with newer Bayesian restoration approaches that we are developing. Conclusions: Various methods for SIM data acquisition and processing are actively being developed, but complete raw data from SIM experiments are not typically published. Publically available, high-quality raw data with examples of processed results will aid researchers when developing new methods in SIM. Biologists will also find interest in the high-resolution images of animal tissues and cells we acquired. All of the data were processed with SIMToolbox, an open-source and freely available software solution for SIM.
- MeSH
- Algorithms MeSH
- Bayes Theorem MeSH
- Cell Line MeSH
- Hep G2 Cells MeSH
- Microscopy, Fluorescence MeSH
- Rabbits MeSH
- Humans MeSH
- Image Processing, Computer-Assisted methods MeSH
- Software MeSH
- Imaging, Three-Dimensional methods MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
We present a computational case study of X-ray single-particle imaging of hydrated proteins on an example of 2-Nitrogenase-Iron protein covered with water layers of various thickness, using a start-to-end simulation platform and experimental parameters of the SPB/SFX instrument at the European X-ray Free-Electron Laser facility. The simulations identify an optimal thickness of the water layer at which the effective resolution for imaging the hydrated sample becomes significantly higher than for the non-hydrated sample. This effect is lost when the water layer becomes too thick. Even though the detailed results presented pertain to the specific sample studied, the trends which we identify should also hold in a general case. We expect these findings will guide future single-particle imaging experiments using hydrated proteins.
- MeSH
- X-Ray Diffraction instrumentation methods MeSH
- Electrons MeSH
- Photons MeSH
- Lasers * MeSH
- Molecular Imaging methods MeSH
- Oxidoreductases chemistry radiation effects MeSH
- X-Rays adverse effects MeSH
- Molecular Dynamics Simulation * MeSH
- Water chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Conformational changes associated with ribosome function have been identified by X-ray crystallography and cryo-electron microscopy. These methods, however, inform poorly on timescales. Neutron scattering is well adapted for direct measurements of thermal molecular dynamics, the 'lubricant' for the conformational fluctuations required for biological activity. The method was applied to compare water dynamics and conformational fluctuations in the 30 S and 50 S ribosomal subunits from Haloarcula marismortui, under high salt, stable conditions. Similar free and hydration water diffusion parameters are found for both subunits. With respect to the 50 S subunit, the 30 S is characterized by a softer force constant and larger mean square displacements (MSD), which would facilitate conformational adjustments required for messenger and transfer RNA binding. It has been shown previously that systems from mesophiles and extremophiles are adapted to have similar MSD under their respective physiological conditions. This suggests that the results presented are not specific to halophiles in high salt but a general property of ribosome dynamics under corresponding, active conditions. The current study opens new perspectives for neutron scattering characterization of component functional molecular dynamics within the ribosome.
- MeSH
- RNA, Archaeal chemistry MeSH
- Haloarcula marismortui chemistry MeSH
- Ribosome Subunits, Small, Archaeal chemistry MeSH
- RNA, Messenger chemistry MeSH
- Neutron Diffraction MeSH
- Molecular Dynamics Simulation * MeSH
- Ribosome Subunits, Large, Archaeal chemistry MeSH
- Publication type
- Journal Article MeSH
Cationic lipids are used to deliver genetic material to living cells. Their proper biophysical characterization is needed in order to design and control this process. In the present work we characterize some properties of recently synthetized cationic lipophosphoramidates. The studied compounds share the same structure of their hydrophobic backbone, but differ in their hydrophilic cationic headgroup, which is formed by a trimethylammonium, a trimethylarsonium or a dicationic moiety. Dynamic light scattering and cryo-transmission electron microscopy proves that the studied lipophosphoramidates create stable unilamellar vesicles. Fluorescence of polarity probe, Laurdan, analyzed using time-dependent fluorescence shift method (TDFS) and generalized polarization (GP) gives important information about the phase, hydration and dynamics of the lipophosphoramidate bilayers. While all of the compounds produced lipid bilayers that were sufficiently fluid for their potential application in gene therapy, their polarity/hydration and mobility was lower than for the standard cationic lipid - DOTAP. Mixing cationic lipophosphoramidates with DOPC helps to reduce this difference. The structure of the cationic headgroup has an important and complex influence on bilayer hydration and mobility. Both TDFS and GP methods are suitable for the characterization of cationic amphiphiles and can be used for screening of the newly synthesized compounds.
In this contribution, four new compounds synthesized from 4-hydroxycoumarin and tyramine/octopamine/norepinephrine/3-methoxytyramine are characterized spectroscopically (IR and NMR), chromatographically (UHPLC-DAD), and structurally at the B3LYP/6-311++G*(d,p) level of theory. The crystal structure of the 4-hydroxycoumarin-octopamine derivative was solved and used as a starting geometry for structural optimization. Along with the previously obtained 4-hydroxycoumarin-dopamine derivative, the intramolecular interactions governing the stability of these compounds were quantified by NBO and QTAIM analyses. Condensed Fukui functions and the HOMO-LUMO gap were calculated and correlated with the number and position of OH groups in the structures. In vitro cytotoxicity experiments were performed to elucidate the possible antitumor activity of the tested substances. For this purpose, four cell lines were selected, namely human colon cancer (HCT-116), human adenocarcinoma (HeLa), human breast cancer (MDA-MB-231), and healthy human lung fibroblast (MRC-5) lines. A significant selectivity towards colorectal carcinoma cells was observed. Molecular docking and molecular dynamics studies with carbonic anhydrase, a prognostic factor in several cancers, complemented the experimental results. The calculated MD binding energies coincided well with the experimental activity, and indicated 4-hydroxycoumarin-dopamine and 4-hydroxycoumarin-3-methoxytyramine as the most active compounds. The ecotoxicology assessment proved that the obtained compounds have a low impact on the daphnia, fish, and green algae population.
- MeSH
- 4-Hydroxycoumarins chemical synthesis chemistry pharmacology MeSH
- X-Ray Diffraction MeSH
- HCT116 Cells MeSH
- HeLa Cells MeSH
- Carbonic Anhydrases chemistry metabolism MeSH
- Humans MeSH
- Molecular Structure MeSH
- Cell Line, Tumor MeSH
- Neoplasms drug therapy enzymology MeSH
- Neurotransmitter Agents chemistry MeSH
- Octopamine chemistry MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents chemical synthesis chemistry pharmacology MeSH
- Molecular Dynamics Simulation MeSH
- Molecular Docking Simulation MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
The Letter describes the preparation and characterization of a conjugate of isoniazid (INH) with magnetic nanoparticles Fe3O4@SiO2 115±60 nm in size. The INH molecules were attached to the surface of nanoparticles by a covalent pH-sensitive amidine bond. The conjugate was characterized by X-ray diffraction, SEM, dynamic light scattering, IR spectroscopy and microanalysis. The conjugate released isoniazid under in vitro conditions (pH=4; 37 °C; t1/2≈115 s). In addition, the cytotoxicity of the Fe3O4@SiO2-INH conjugate was evaluated in SK-BR-3 cells using the xCELLigence system.
- MeSH
- Anti-Bacterial Agents chemical synthesis chemistry toxicity MeSH
- X-Ray Diffraction MeSH
- Isoniazid chemical synthesis chemistry toxicity MeSH
- Hydrogen-Ion Concentration MeSH
- Cells, Cultured MeSH
- Magnetics * MeSH
- Microscopy, Electron, Scanning MeSH
- Nanoparticles chemistry MeSH
- Silicon Dioxide chemistry MeSH
- Cell Proliferation drug effects MeSH
- Ferric Compounds chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The effects of ionic liquids on model phospholipid membranes were studied by small-angle X-ray scattering, dynamic light scattering (DLS) and zeta potential measurements. Multilamellar 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes and large unilamellar vesicles composed of l-α-phosphatidylcholine (eggPC) and l-α-phosphatidylglycerol (eggPG) (80:20mol%) or eggPC, eggPG, and cholesterol (60:20:20mol%) were used as biomimicking membrane models. The effects of the phosphonium-based ionic liquids: tributylmethylphosphonium acetate, trioctylmethylphosphonium acetate, tributyl(tetradecyl)-phosphonium acetate, and tributyl(tetradecyl)-phosphonium chloride, were compared to those of 1-ethyl-3-methyl-imidazolium acetate. With multilamellar vesicles, the ionic liquids that did not disrupt liposomes decreased the lamellar spacing as a function of concentration. The magnitude of the effect depended on concentration for all studied ionic liquids. Using large unilamellar vesicles, first a slight decrease in the vesicle size, then aggregation of vesicles was observed by DLS for increasing ionic liquid concentrations. At concentrations just below those that caused aggregation of liposomes, large unilamellar vesicles were coated by ionic liquid cations, evidenced by a change in their zeta potential. The ability of phosphonium-based ionic liquids to affect liposomes is related to the length of the hydrocarbon chains in the cation. Generally, the ability of ionic liquids to disrupt liposomes goes hand in hand with inducing disorder in the phospholipid membrane. However, trioctylmethylphosphonium acetate selectively extracted and induced a well-ordered lamellar structure in phospholipids from disrupted cholesterol-containing large unilamellar vesicles. This kind of effect was not seen with any other combination of ionic liquids and liposomes.
- MeSH
- Cholesterol chemistry MeSH
- X-Ray Diffraction MeSH
- Dynamic Light Scattering MeSH
- Phospholipids chemistry MeSH
- Ionic Liquids chemistry MeSH
- Liposomes chemistry MeSH
- Scattering, Small Angle MeSH
- Organophosphorus Compounds chemistry MeSH
- Unilamellar Liposomes chemistry MeSH
- Publication type
- Journal Article MeSH
Silver nanoparticles (AgNPs) have been used for decades as anti-bacterial agents in various industrial fields such as cosmetics, health industry, food storage, textile coatings and environmental applications, although their toxicity is not fully recognized yet. Antimicrobial and catalytic activity of AgNPs depends on their size as well as structure, shape, size distribution, and physico-chemical environment. The unique properties of AgNPs require novel or modified toxicological methods for evaluation of their toxic potential combined with robust analytical methods for characterization of nanoparticles applied in relevant vehicles, e.g., culture medium with/without serum and phosphate buffered saline.