Development of the craniofacies occurs in embryological intimacy with development of the brain and both show normal left-right asymmetries. While facial dysmorphology occurs to excess in psychotic illness, facial asymmetry has yet to be investigated as a putative index of brain asymmetry. Ninety-three subjects (49 controls, 22 schizophrenia, 22 bipolar disorder) received 3D laser surface imaging of the face. On geometric morphometric analysis with (x, y, z) visualisations of statistical models for facial asymmetries, in controls the upper face and periorbital region, which share embryological intimacy with the forebrain, showed marked asymmetries. Their geometry included: along the x-axis, rightward asymmetry in its dorsal-medial aspects and leftward asymmetry in its ventral-lateral aspects; along the z-axis, anterior protrusion in its right ventral-lateral aspect. In both schizophrenia and bipolar disorder these normal facial asymmetries were diminished, with residual retention of asymmetries in bipolar disorder. This geometry of normal facial asymmetries shows commonalities with that of normal frontal lobe asymmetries. These findings indicate a trans-diagnostic process that involves loss of facial asymmetries in both schizophrenia and bipolar disorder. Embryologically, they implicate loss of face-brain asymmetries across gestational weeks 7-14 in processes that involve genes previously associated with risk for schizophrenia.
- MeSH
- Facial Asymmetry * diagnostic imaging pathology MeSH
- Bipolar Disorder * diagnostic imaging pathology MeSH
- Adult MeSH
- Functional Laterality physiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Brain diagnostic imaging pathology MeSH
- Face MeSH
- Psychotic Disorders diagnostic imaging pathology MeSH
- Schizophrenia * diagnostic imaging pathology MeSH
- Imaging, Three-Dimensional MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
OBJECTIVE: To assess modelled facial development of infants with unilateral cleft lip (CL) and cleft lip and palate (UCLP) compared to controls up to two years of age. DESIGN AND PARTICIPANTS: A total of 209 facial images of children (CL: n = 37; UCLP: n = 39; controls: n = 137) were obtained in four age categories (T0 = 0.2-0.5; T1 = 0.6-1.0; T2 = 1.1-1.5; T3 = 1.6-2.0 years) and were evaluated using stereophotogrammetry and geometric morphometry. All patients underwent lip surgery before T0, patients with UCLP underwent palatoplasty (T0, T1 before palatoplasty; T2, T3 after palatoplasty). RESULTS: In patients with CL, the forehead was significantly retracted (p ≤ 0.001), while the supraorbital and ocular regions were prominent (p ≤ 0.001). The oronasal region appeared convex (p ≤ 0.001). The lower lip and chin were non-significantly protruded. In patients with UCLP, a significantly retracted forehead and prominent supraorbital region were apparent (p ≤ 0.001). A retrusive oronasal region (p ≤ 0.001) was observed in the middle face. The chin was anteriorly protruded (p ≤ 0.01). No progression of deviations was found with increasing age. After the first year, a slight improvement in the morphological features became apparent. The shape variability of the clefts and controls overlapped, suggesting a comparable modelled facial development. CONCLUSIONS: The facial morphology of individuals with cleft was comparable to the norm. Shape deviation was apparent in the oronasal region, forehead, and chin, which minimised with increasing age even in complete clefts.
- MeSH
- Photogrammetry * methods MeSH
- Cephalometry MeSH
- Infant MeSH
- Humans MeSH
- Maxillofacial Development MeSH
- Face anatomy & histology abnormalities MeSH
- Child, Preschool MeSH
- Cross-Sectional Studies MeSH
- Cleft Palate * surgery diagnostic imaging pathology MeSH
- Cleft Lip * surgery pathology MeSH
- Case-Control Studies MeSH
- Imaging, Three-Dimensional * MeSH
- Check Tag
- Infant MeSH
- Humans MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
The most significant sexual differences in the human skull are located in the upper third of the face (the frontal bone), which is a useful research object, mainly in combination with virtual anthropology methods. However, the influence of biological relatedness on sexual dimorphism and frontal bone variability remains unknown. This study was directed at sexual difference description and sex classification using the form and shape of the external surface of the frontal bones from a genealogically documented Central European osteological sample (nineteenth to twentieth centuries). The study sample consisted of 47 cranial CT images of the adult members of several branches of one family group over 4 generations. Three-dimensional virtual models of the frontal bones were analyzed using geometric morphometrics and multidimensional statistics. Almost the entire external frontal surface was significantly different between males and females, especially in form. Significant differences were also found between this related sample and an unrelated one. Sex estimation of the biologically related individuals was performed using the classification models developed on a sample of unrelated individuals from the recent Czech population (Čechová et al. in Int J Legal Med 133: 1285 1294, 2019), with a result of 74.46% and 63.83% in form and shape, respectively. Failure of this classifier was caused by the existence of typical traits found in the biologically related sample different from the usual manifestation of sexual dimorphism. This can be explained as due to the increased degree of similarity and the reduction of variability in biologically related individuals. The results show the importance of testing previously published methods on genealogical data.
- MeSH
- Frontal Bone * diagnostic imaging anatomy & histology MeSH
- Adult MeSH
- Humans MeSH
- Tomography, X-Ray Computed MeSH
- Sex Characteristics MeSH
- Forensic Anthropology * methods MeSH
- Sex Determination by Skeleton * methods MeSH
- Imaging, Three-Dimensional * MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Alveolar bone grafting (ABG) is a critical surgical intervention in patients with a cleft of the alveolus, aimed at reconstructing the alveolar ridge to facilitate proper eruption, periodontal support, and alignment of adjacent permanent teeth. The optimal timing for ABG remains debated, with late secondary ABG between the ages of 9 and 11 being widely adopted. This study compared the palatal shapes of 28 children at a mean age of 9.5 years (SD = 0.7) who underwent early secondary ABG at a mean age of 2.1 years (SD = 0.6) or 33 children at a mean age of 10.8 years (SD = 1.5) who underwent late secondary ABG at a mean age of 8.6 years (SD = 1.3) to 60 non-cleft controls at a mean age of 8.6 years (SD = 1.2). The palatal shapes were captured with 239 landmarks digitized on the palate on a digital model. Utilizing geometric morphometric methods, i.e., generalized Procrustes superimpositions, principal component analysis, and permutation tests, we assessed the impact of ABG timing on palatal morphology. The first five principal components (PCs) explained 64.1% of the total shape variability: PC1 = 26.1%; PC2 = 12%; PC3 = 11.9%; PC4 = 7.8%; and PC5 = 6.4%. The Procrustes distance between both cleft groups and the control group was more than twice as large as the Procrustes distance between the early ABG and late ABG groups. Nonetheless, all intergroup differences were statistically significant. Our findings suggest that early ABG has a limited negative effect on palatal shape, providing comparable outcomes to late ABG. The study highlights the potential suitability of early ABG, challenging conventional practices and encouraging further exploration into its long-term effects on maxillary growth.
- Publication type
- Journal Article MeSH
The degree of deviation of palatal shape from the norm may reflect facial growth disturbance in cleft lip and palate (CLP). The objective of this study was to compare the palatal morphology in children treated with different surgical protocols. Palatal shape was assessed with geometric morphometrics (GM) including Procrustes superimposition, principal component analysis (PCA), and permutation tests with 10,000 permutations, in 24 children treated with two-stage repair with a late palatoplasty (Prague group; mean age at assessment 8.9 years), 16 children after two-stage repair with early palatoplasty (Bratislava group; mean age 8.2 years), and 53 children treated with a one-stage repair (Warsaw group, mean age 10.3 years). The non-cleft control group comprised 60 children at 8.6 years. The first five principal components (PCs) accounted for a minimum of 5% of the total shape variability (65.9% in total). The Procrustes distance was largest for the Prague vs. Control pair and smallest for the Prague vs. Bratislava pair. Nonetheless, all intergroup differences were statistically significant (p < 0.01). One can conclude that variations in palatal shape roughly correspond to cephalometric and dental arch relationship findings from prior research. Among the children who underwent a one-stage repair of the complete cleft, their palatal morphology most closely resembled that of the non-cleft controls. Conversely, children who received late palatoplasty exhibited the greatest degree of deviation.
- Publication type
- Journal Article MeSH
OBJECTIVES: Facial directional asymmetry research, including age-related changes, is crucial for the evaluation of treatment of craniofacial malformations/trauma in orthodontics, facial surgery and forensic sciences. The aim was to describe facial directional asymmetry (DA) in different age categories of adults using 3D methods. According to our hypothesis, facial shape DA (1) depends on sex; (2) differs among age groups; and (3) has wider variability in older age. MATERIAL AND METHODS: A cross-sectional sample of healthy Czech adults without craniofacial trauma or anomalies consisted of 300 3D facial models (151 females). The age-range in the study was between 20-80 years. The shape asymmetry of 28 3D landmarks was evaluated using geometric morphometrics and multivariate statistics. RESULTS: The manifestation of DA was similar in both sexes and in each age category; however, there were some statistical differences. In contrast to the ideal symmetrical face, the mean asymmetrical faces tended to create a slightly bent "C" shape of the midline. Therefore, the upper face was rotated slightly clockwise and the lower face counter-clockwise. The right eye was located slightly higher, with the nasal tip and mandibular region tilting to the left. Sex differences in facial DA were significant before the age of 40. DA was more significant in the youngest males than in the oldest, while the women's DA did not change. CONCLUSIONS: The DA patterns were similar in both sexes and in all age categories (a slightly bent C shape of the midline); however, some significant local differences between male age groups were found. A significantly more pronounced asymmetry compared to other age groups was found only in the youngest males from 20 to 40 years. Moreover, significant sexual dimorphism of DA rapidly decreased after middle age, likely caused by the same age-related changes of the face during aging.
- MeSH
- Facial Asymmetry * etiology MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Nose MeSH
- Sex Characteristics MeSH
- Cross-Sectional Studies MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Imaging, Three-Dimensional * MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
OBJECTIVES: The study followed the modelling of postnatal growth of a healthy palate of the Central European (Czech) population sample based on transverse data on sex and age from 6 to 19 years. MATERIALS AND METHODS: Digitised 3D models of 212 healthy palatal surfaces were evaluated using 3D geometric morphometrics and superimpositions. The individuals were grouped based on age (preschool, younger and older school age, younger and older adolescents, young adults) and sex (♂ n = 101, ♀ n = 111). RESULTS: Female palatal development was non-linear and was interrupted between the 10-12 years and then proceeded intensively until the age of 15 when it ceased. In contrast, male-modelled growth was consistent throughout the follow-up and continued linearly until at least 19 years of age. The palate did not widen further with increasing age, and primarily palatal vaulting and heightening were found. The characteristics and distribution of areas with extensive modelled growth changes were comparable in females and males, as confirmed by the location of principal components (PC1 and PC2) within modal space and growth trajectories. The extent of sexual dimorphism increased from 15 years of age due to pubertal spurt combined with earlier completion of palatal development in females. CONCLUSIONS: The study showed modelled healthy palatal development from 6 years of age to early adulthood, which might be utilised as reference standards for the Central European population sample. CLINICAL RELEVANCE: The comparison of normal reference subjects with patients with cranio-maxillo-facial dysmorphologies represents the first step in diagnosing and establishing effective therapy.
- MeSH
- Child MeSH
- Adult MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Face * MeSH
- Palate * MeSH
- Child, Preschool MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
A detailed understanding of craniofacial ontogenetic development is important in a variety of scientific disciplines dealing with facial reconstruction, forensic identification, ageing prediction, and monitoring of pathological growth, including the effect of therapy. The main goals of this study were (1) the construction of the facial aging model using local polynomial regression fitting separately for both sexes, (2) evaluation of the aging effect not only on facial form as a whole but also on dimensions important for clinical practice, and (3) monitoring of the development of shape facial sexual dimorphism. Our study was based on the form and shape analysis of three-dimensional facial surface models of 456 individuals aged 14-83 years. The facial models were obtained using a structured light-based optical scanner and divided (for some analyses) into four age categories (juveniles, young adults, middle adults, and elderly adults). The methodology was based on geometric and classic morphometrics including multivariate statistics. Aging in both sexes shared common traits such as more pronounced facial roundness reducing facial convexity, sagging soft tissue, smaller visible areas of the eyes, greater nose, and thinner lips. In contrast to female faces, male faces increase in size until almost 30 years of age. After the age of 70, male facial size not only stagnates, like in females, but actually decreases slightly. Sexual dimorphic traits tended to diminish in the frontal and orbitonasal areas and increase in the gonial area.
INTRODUCTION: This study aimed to evaluate changes in facial size and shape in children and their relationship to the changes in height and weight. METHODS: One hundred and thirteen healthy children aged between 6 and 13 years were followed annually for 2 consecutive years. The facial morphology was captured in 12-month intervals (from T1 to T2 and from T2 to T3) using a 3-dimensional stereophotogrammetric optical scanner; the body height and weight were recorded simultaneously. The changes in facial size and shape were analyzed with geometric morphometrics. Multiple regression mixed-effects models were exploited for evaluation of the association between the changes of facial size or shape and age at the beginning of the observation, gender, and change of height and weight. RESULTS: The centroid size (reflecting facial size) increased from T1 to T2 and T2 to T3 in boys and girls. In contrast, the facial shape did not change during both 12-month observation periods (T1 to T2 and T2 to T3) either in boys or girls. Of 2 multiple regression mixed-effects models, only the model with the change of natural logarithm of centroid size as a dependent variable was statistically significant (P <0.001; adjusted r2 = 0.29). It showed that height and weight changes were associated with a change of the facial size (with weight change having a greater effect than height change: adjusted r2 = 0.25 for weight change and adjusted r2 = 0.106 for height change). CONCLUSIONS: Most changes in the facial morphology observed in our cohort were associated with increasing facial size. In contrast, the shape of the face remained relatively constant. Body height and weight gains were associated with the change of the facial size only. However, only 29% of the variation in facial size was explained by height or weight changes during growth.
- MeSH
- Child MeSH
- Photogrammetry MeSH
- Weight Gain MeSH
- Humans MeSH
- Adolescent MeSH
- Follow-Up Studies MeSH
- Face * anatomy & histology diagnostic imaging MeSH
- Body Height * MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Trichodina centrostrigeata Basson, Van As et Paperna, 1983 from Oreochromis mossambicus (Peters) and O. niloticus (Linnaeus) from different host populations from Argentina, Mexico and South Africa was reviewed. Although T. centrostrigeata has a distinct denticle structure that makes morphological taxonomic inferences uncomplicated, variation of the denticles within and among individuals and populations were still observed. While traditional taxonomy of mobilines is heavily reliant on morphometrics, and recently even more so on molecular analysis, this paper proposes the use of geometric morphometry, specifically elliptical Fourier analysis, to address morphological conflicts that arise when comparing different populations. By applying this technique, combined with traditional taxonomy, it was found that T. centrostrigeata in this study can be grouped into two separate morphotypes, the first (type a) from aquaculture farms in Argentina and Mexico and the second (type b) from a natural habitat in Glen Alpine Dam, South Africa. This study supports the validity of geometric morphometry as an additional technique to distinguish not only between species but also evolutionary plasticity of the same species from different localities and habitats.