Most cited article - PubMed ID 12384524
Sudan I is a potential carcinogen for humans: evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes
The plant extract aristolochic acid (AA), containing aristolochic acids I (AAI) and II (AAII) as major components, causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), unique renal diseases associated with upper urothelial cancer. Recently (Chemical Research in Toxicology 33(11), 2804-2818, 2020), we showed that the in vivo metabolism of AAI and AAII in Wistar rats is influenced by their co-exposure (i.e., AAI/AAII mixture). Using the same rat model, we investigated how exposure to the AAI/AAII mixture can influence AAI and AAII DNA adduct formation (i.e., AA-mediated genotoxicity). Using 32P-postlabelling, we found that AA-DNA adduct formation was increased in the livers and kidneys of rats treated with AAI/AAII mixture compared to rats treated with AAI or AAII alone. Measuring the activity of enzymes involved in AA metabolism, we showed that enhanced AA-DNA adduct formation might be caused partially by both decreased AAI detoxification as a result of hepatic CYP2C11 inhibition during treatment with AAI/AAII mixture and by hepatic or renal NQO1 induction, the key enzyme predominantly activating AA to DNA adducts. Moreover, our results indicate that AAII might act as an inhibitor of AAI detoxification in vivo. Consequently, higher amounts of AAI might remain in liver and kidney tissues, which can be reductively activated, resulting in enhanced AAI DNA adduct formation. Collectively, these results indicate that AAII present in the plant extract AA enhances the genotoxic properties of AAI (i.e., AAI DNA adduct formation). As patients suffering from AAN and BEN are always exposed to the plant extract (i.e., AAI/AAII mixture), our findings are crucial to better understanding host factors critical for AAN- and BEN-associated urothelial malignancy.
- Keywords
- Balkan endemic nephropathy, DNA adducts, NAD(P)H:quinone oxidoreductase 1, aristolochic acid I, aristolochic acid II, aristolochic acid nephropathy, aristolochic acid-mediated carcinogenesis, cytochrome P450, genotoxicity,
- MeSH
- DNA Adducts metabolism MeSH
- DNA, Neoplasm metabolism MeSH
- Carcinogenesis * chemically induced metabolism MeSH
- Carcinogens toxicity MeSH
- Rats MeSH
- Aristolochic Acids toxicity MeSH
- Rats, Wistar MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA Adducts MeSH
- aristolochic acid B MeSH Browser
- aristolochic acid I MeSH Browser
- DNA, Neoplasm MeSH
- Carcinogens MeSH
- Aristolochic Acids MeSH
The environmental pollutant benzo[a]pyrene (BaP) is a human carcinogen that reacts with DNA after metabolic activation catalysed by cytochromes P450 (CYP) 1A1 and 1B1 together with microsomal epoxide hydrolase. The azo dye Sudan I is a potent inducer of CYP1A1/2. Here, Wistar rats were either treated with single doses of BaP (150 mg/kg bw) or Sudan I (50 mg/kg bw) alone or with both compounds in combination to explore BaP-derived DNA adduct formation in vivo. Using 32P-postlabelling, DNA adducts generated by BaP-7,8-dihydrodiol-9,10-epoxide were found in livers of rats treated with BaP alone or co-exposed to Sudan I. During co-exposure to Sudan I prior to BaP treatment, BaP-DNA adduct levels increased 2.1-fold in comparison to BaP treatment alone. Similarly, hepatic microsomes isolated from rats exposed to Sudan I prior to BaP treatment were also the most effective in generating DNA adducts in vitro with the activated metabolites BaP-7,8-dihydrodiol or BaP-9-ol as intermediates. DNA adduct formation correlated with changes in the expression and/or enzyme activities of CYP1A1, 1A2 and 1B1 in hepatic microsomes. Thus, BaP genotoxicity in rats in vivo appears to be related to the enhanced expression and/or activity of hepatic CYP1A1/2 and 1B1 caused by exposure of rats to the studied compounds. Our results indicate that the industrially employed azo dye Sudan I potentiates the genotoxicity of the human carcinogen BaP, and exposure to both substances at the same time seems to be hazardous to humans.
- Keywords
- DNA-adducts, Sudan I, benzo[a]pyrene, cytochromes P450 1A1 and 1A2 and 1B1, genotoxicity, microsomal epoxide hydrolase,
- MeSH
- DNA Adducts toxicity MeSH
- Coloring Agents toxicity MeSH
- Benzo(a)pyrene toxicity MeSH
- Cytochrome P-450 CYP1A1 metabolism MeSH
- Microsomes, Liver drug effects MeSH
- Liver drug effects MeSH
- Carcinogens, Environmental toxicity MeSH
- Rats MeSH
- Naphthols toxicity MeSH
- Rats, Wistar MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 1-phenylazo-2-naphthol MeSH Browser
- DNA Adducts MeSH
- Coloring Agents MeSH
- benzo(a)pyrene-DNA adduct MeSH Browser
- Benzo(a)pyrene MeSH
- Cytochrome P-450 CYP1A1 MeSH
- Carcinogens, Environmental MeSH
- Naphthols MeSH
Herein, the in vitro metabolism of tyrosine kinase inhibitor cabozantinib, the drug used for the treatment of metastatic medullary thyroid cancer and advanced renal cell carcinoma, was studied using hepatic microsomal samples of different human donors, human recombinant cytochromes P450 (CYPs), flavin-containing mono-oxygenases (FMOs) and aldehyde oxidase. After incubation with human microsomes, three metabolites, namely cabozantinib N-oxide, desmethyl cabozantinib and monohydroxy cabozantinib, were detected. Significant correlations were found between CYP3A4 activity and generation of all metabolites. The privileged role of CYP3A4 was further confirmed by examining the effect of CYP inhibitors and by human recombinant enzymes. Only four of all tested human recombinant cytochrome P450 were able to oxidize cabozantinib, and CYP3A4 exhibited the most efficient activity. Importantly, cytochrome b5 (cyt b5) stimulates the CYP3A4-catalyzed formation of cabozantinib metabolites. In addition, cyt b5 also stimulates the activity of CYP3A5, whereas two other enzymes, CYP1A1 and 1B1, were not affected by cyt b5. Since CYP3A4 exhibits high expression in the human liver and was found to be the most efficient enzyme in cabozantinib oxidation, we examined the kinetics of this oxidation. The present study provides substantial insights into the metabolism of cabozantinib and brings novel findings related to cabozantinib pharmacokinetics towards possible utilization in personalized medicine.
- Keywords
- cabozantinib, cytochrome P450, cytochrome b5, tyrosine kinase inhibitor,
- Publication type
- Journal Article MeSH
The metabolism of vandetanib, a tyrosine kinase inhibitor used for treatment of symptomatic/progressive medullary thyroid cancer, was studied using human hepatic microsomes, recombinant cytochromes P450 (CYPs) and flavin-containing monooxygenases (FMOs). The role of CYPs and FMOs in the microsomal metabolism of vandetanib to N-desmethylvandetanib and vandetanib-N-oxide was investigated by examining the effects of CYP/FMO inhibitors and by correlating CYP-/FMO-catalytic activities in each microsomal sample with the amounts of N-desmethylvandetanib/vandetanib-N-oxide formed by these samples. CYP3A4/FMO-activities significantly correlated with the formation of N-desmethylvandetanib/ vandetanib-N-oxide. Based on these studies, most of the vandetanib metabolism was attributed to N-desmethylvandetanib/vandetanib-N-oxide to CYP3A4/FMO3. Recombinant CYP3A4 was most efficient to form N-desmethylvandetanib, while FMO1/FMO3 generated N-oxide. Cytochrome b5 stimulated the CYP3A4-catalyzed formation of N-desmethylvandetanib, which is of great importance because CYP3A4 is not only most efficient in generating N-desmethylvandetanib, but also most significant due to its high expression in human liver. Molecular modeling indicated that binding of more than one molecule of vandetanib into the CYP3A4-active center can be responsible for the high efficiency of CYP3A4 N-demethylating vandetanib. Indeed, the CYP3A4-mediated reaction exhibits kinetics of positive cooperativity and this corresponded to the in silico model, where two vandetanib molecules were found in CYP3A4-active center.
- Keywords
- cytochromes P450, flavin-containing monoxygenases, metabolism, tyrosine kinase inhibitor, vandetanib,
- MeSH
- Quinazolines chemistry pharmacology MeSH
- Cytochrome P-450 CYP3A chemistry metabolism MeSH
- Enzymes chemistry metabolism MeSH
- Protein Kinase Inhibitors chemistry pharmacology MeSH
- Microsomes, Liver metabolism MeSH
- Rabbits MeSH
- Rats MeSH
- Humans MeSH
- Molecular Conformation MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Mice MeSH
- Oxidation-Reduction * MeSH
- Piperidines chemistry pharmacology MeSH
- Antineoplastic Agents chemistry pharmacology MeSH
- Recombinant Proteins MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Rats MeSH
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Quinazolines MeSH
- Cytochrome P-450 CYP3A MeSH
- Enzymes MeSH
- Protein Kinase Inhibitors MeSH
- Piperidines MeSH
- Antineoplastic Agents MeSH
- Recombinant Proteins MeSH
- vandetanib MeSH Browser
The anticancer drug ellipticine exerts its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes. The present study has examined the role of cytochrome P450 oxidoreductase (POR) and cytochrome b5 (Cyb5), electron donors to P450 enzymes, in the CYP-mediated metabolism and disposition of ellipticine in vivo. We used Hepatic Reductase Null (HRN) and Hepatic Cytochrome b5/P450 Reductase Null (HBRN) mice. HRN mice have POR deleted specifically in hepatocytes; HBRN mice also have Cyb5 deleted in the liver. Mice were treated once with 10 mg/kg body weight ellipticine (n = 4/group) for 24 h. Ellipticine-DNA adduct levels measured by 32P-postlabelling were significantly lower in HRN and HBRN livers than in wild-type (WT) livers; however no significant difference was observed between HRN and HBRN livers. Ellipticine-DNA adduct formation in WT, HRN and HBRN livers correlated with Cyp1a and Cyp3a enzyme activities measured in hepatic microsomes in the presence of NADPH confirming the importance of P450 enzymes in the bioactivation of ellipticine in vivo. Hepatic microsomal fractions were also utilised in incubations with ellipticine and DNA in the presence of NADPH, cofactor for POR, and NADH, cofactor for Cyb5 reductase (Cyb5R), to examine ellipticine-DNA adduct formation. With NADPH adduct formation decreased as electron donors were lost which correlated with the formation of the reactive metabolites 12- and 13-hydroxy-ellipticine in hepatic microsomes. No difference in adduct formation was observed in the presence of NADH. Our study demonstrates that Cyb5 contributes to the P450-mediated bioactivation of ellipticine in vitro, but not in vivo.
- Keywords
- Cytochrome P450, Cytochrome b(5), DNA Adducts, Metabolism, Mouse models,
- MeSH
- DNA Adducts metabolism MeSH
- Aryl Hydrocarbon Hydroxylases metabolism MeSH
- Cytochrome P-450 CYP3A MeSH
- Cytochrome-B(5) Reductase deficiency genetics MeSH
- Cytochromes b5 deficiency genetics MeSH
- Ellipticines metabolism pharmacology MeSH
- Phenotype MeSH
- Genotype MeSH
- Hepatocytes enzymology MeSH
- Microsomes, Liver enzymology MeSH
- Liver enzymology MeSH
- Activation, Metabolic MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- NADPH-Ferrihemoprotein Reductase metabolism MeSH
- Antineoplastic Agents metabolism pharmacology MeSH
- Cytochrome P-450 Enzyme System metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA Adducts MeSH
- Aryl Hydrocarbon Hydroxylases MeSH
- CYP3A protein, mouse MeSH Browser
- Cytochrome P-450 CYP3A MeSH
- Cytochrome-B(5) Reductase MeSH
- Cytochromes b5 MeSH
- Ellipticines MeSH
- ellipticine MeSH Browser
- NADPH-Ferrihemoprotein Reductase MeSH
- Antineoplastic Agents MeSH
- Cytochrome P-450 Enzyme System MeSH
Endocrine disruptors (EDs) are compounds that interfere with the balance of the endocrine system by mimicking or antagonising the effects of endogenous hormones, by altering the synthesis and metabolism of natural hormones, or by modifying hormone receptor levels. The synthetic estrogen 17α-ethinylestradiol (EE2) and the environmental carcinogen benzo[a]pyrene (BaP) are exogenous EDs whereas the estrogenic hormone 17β-estradiol is a natural endogenous ED. Although the biological effects of these individual EDs have partially been studied previously, their toxicity when acting in combination has not yet been investigated. Here we treated Wistar rats with BaP, EE2 and estradiol alone or in combination and studied the influence of EE2 and estradiol on: (i) the expression of cytochrome P450 (CYP) 1A1 and 1B1 in rat liver on the transcriptional and translational levels; (ii) the inducibility of these CYP enzymes by BaP in this rat organ; (iii) the formation of BaP-DNA adducts in rat liver in vivo; and (iv) the generation of BaP-induced DNA adducts after activation of BaP with hepatic microsomes of rats exposed to BaP, EE2 and estradiol and with recombinant rat CYP1A1 in vitro. BaP acted as a strong and moderate inducer of CYP1A1 and 1B1 in rat liver, respectively, whereas EE2 or estradiol alone had no effect on the expression of these enzymes. However, when EE2 was administered to rats together with BaP, it significantly decreased the potency of BaP to induce CYP1A1 and 1B1 gene expression. For EE2, but not estradiol, this also correlated with a reduction of BaP-induced CYP1A1 enzyme activity in rat hepatic microsomes. Further, while EE2 and estradiol did not form covalent adducts with DNA, they affected BaP-derived DNA adduct formations in vivo and in vitro. The observed decrease in BaP-DNA adduct levels in rat liver in vivo resulted from the inhibition of CYP1A1-mediated BaP bioactivation by EE2 and estradiol. Our results indicate that BaP genotoxicity mediated through its activation by CYP1A1 in rats in vivo is modulated by estradiol and its synthetic derivative EE2.
- Keywords
- 17alpha-ethinylestradiol, Benzo[a]pyrene, Cytochrome P450, DNA-adducts, Endocrine disruptors, Estradiol,
- MeSH
- Benzo(a)pyrene toxicity MeSH
- Cytochrome P-450 CYP1A1 biosynthesis genetics MeSH
- Endocrine Disruptors toxicity MeSH
- Estradiol toxicity MeSH
- Ethinyl Estradiol toxicity MeSH
- Microsomes, Liver drug effects enzymology MeSH
- Rats MeSH
- Rats, Wistar MeSH
- Gene Expression Regulation, Enzymologic * drug effects MeSH
- Drug Synergism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Benzo(a)pyrene MeSH
- Cytochrome P-450 CYP1A1 MeSH
- Endocrine Disruptors MeSH
- Estradiol MeSH
- Ethinyl Estradiol MeSH
Benzo[a]pyrene (BaP) is an environmental pollutant that, based on evidence largely from in vitro studies, exerts its genotoxic effects after metabolic activation by cytochrome P450s. In the present study, Hepatic Reductase Null (HRN) and Hepatic Cytochrome b 5 /P450 Reductase Null (HBRN) mice have been used to study the role of P450s in the metabolic activation of BaP in vivo. In HRN mice, cytochrome P450 oxidoreductase (POR), the electron donor to P450, is deleted specifically in hepatocytes. In HBRN mice the microsomal haemoprotein cytochrome b 5 , which can also act as an electron donor from cytochrome b 5 reductase to P450s, is also deleted in the liver. Wild-type (WT), HRN and HBRN mice were treated by i.p. injection with 125 mg/kg body weight BaP for 24 h. Hepatic microsomal fractions were isolated from BaP-treated and untreated mice. In vitro incubations carried out with BaP-pretreated microsomal fractions, BaP and DNA resulted in significantly higher BaP-DNA adduct formation with WT microsomal fractions compared to those from HRN or HBRN mice. Adduct formation (i.e. 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP [dG-N2-BPDE]) correlated with observed CYP1A activity and metabolite formation (i.e. BaP-7,8-dihydrodiol) when NADPH or NADH was used as enzymatic cofactors. BaP-DNA adduct levels (i.e. dG-N2-BPDE) in vivo were significantly higher (~ sevenfold) in liver of HRN mice than WT mice while no significant difference in adduct formation was observed in liver between HBRN and WT mice. Our results demonstrate that POR and cytochrome b 5 both modulate P450-mediated activation of BaP in vitro. However, hepatic P450 enzymes in vivo appear to be more important for BaP detoxification than its activation.
- MeSH
- DNA Adducts metabolism MeSH
- Benzo(a)pyrene metabolism MeSH
- Cytochrome-B(5) Reductase metabolism MeSH
- Hepatocytes enzymology MeSH
- Microsomes, Liver enzymology MeSH
- Mice, Knockout MeSH
- Mice MeSH
- NADPH-Ferrihemoprotein Reductase metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA Adducts MeSH
- benzo(a)pyrene-DNA adduct MeSH Browser
- Benzo(a)pyrene MeSH
- Cytochrome-B(5) Reductase MeSH
- NADPH-Ferrihemoprotein Reductase MeSH
ABSTRACT: Cytochrome P450 (CYP) 1A1 is the most important enzyme activating and detoxifying the human carcinogen benzo[a]pyrene (BaP). In the previous studies, we had shown that not only the canonic NADPH:CYP oxidoreductase (POR) can act as electron donor but also cytochrome b5 and its reductase, NADH:cytochrome b5 reductase. Here, we studied the role of the expression system used on the metabolites generated and the levels of DNA adducts formed by activated BaP. We used an eukaryotic and a prokaryotic cellular system (Supersomes, microsomes isolated from insect cells, and Bactosomes, a membrane fraction of Escherichia coli, each transfected with cDNA of human CYP1A1 and POR). These were reconstituted with cytochrome b5 with and without NADH:cytochrome b5 reductase. We evaluated the effectiveness of each cofactor, NADPH and NADH, to mediate BaP metabolism. We found that both systems differ in catalysing the reactions activating and detoxifying BaP. Two BaP-derived DNA adducts were generated by the CYP1A1-Supersomes, both in the presence of NADPH and NADH, whereas NADPH but not NADH was able to support this reaction in the CYP1A1-Bactosomes. Seven BaP metabolites were found in Supersomes with NADPH or NADH, whereas NADPH but not NADH was able to generate five BaP metabolites in Bactosomes. Our study demonstrates different catalytic efficiencies of CYP1A1 expressed in prokaryotic and eukaryotic cells in BaP bioactivation indicating some limitations in the use of E. coli cells for such studies.
Cytochrome P450 1A2 (P450 1A2, CYP1A2) is a membrane-bound enzyme that oxidizes a broad range of hydrophobic substrates. The structure and dynamics of both the catalytic and trans-membrane (TM) domains of this enzyme in the membrane/water environment were investigated using a multiscale computational approach, including coarse-grained and all-atom molecular dynamics. Starting from the spontaneous self-assembly of the system containing the TM or soluble domain immersed in randomized dilauroyl phosphatidylcholine (DLPC)/water mixture into their respective membrane-bound forms, we reconstituted the membrane-bound structure of the full-length P450 1A2. This structure includes a TM helix that spans the membrane, while being connected to the catalytic domain by a short flexible loop. Furthermore, in this model, the upper part of the TM helix interacts directly with a conserved and highly hydrophobic N-terminal proline-rich segment of the catalytic domain; this segment and the FG loop are immersed in the membrane, whereas the remaining portion of the catalytic domain remains exposed to aqueous solution. The shallow membrane immersion of the catalytic domain induces a depression in the opposite intact layer of the phospholipids. This structural effect may help in stabilizing the position of the TM helix directly beneath the catalytic domain. The partial immersion of the catalytic domain also allows for the enzyme substrates to enter the active site from either aqueous solution or phospholipid environment via several solvent- and membrane-facing tunnels in the full-length P450 1A2. The calculated tunnel dynamics indicated that the opening probability of the membrane-facing tunnels is significantly enhanced when a DLPC molecule spontaneously penetrates into the membrane-facing tunnel 2d. The energetics of the lipid penetration process were assessed by the linear interaction energy (LIE) approximation, and found to be thermodynamically feasible.
- MeSH
- Cytochrome P-450 CYP1A2 chemistry MeSH
- Phosphatidylcholines MeSH
- Phospholipids chemistry MeSH
- Catalytic Domain MeSH
- Catalysis MeSH
- Humans MeSH
- Molecular Dynamics Simulation MeSH
- Protein Binding MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 1,2-dilauroylphosphatidylcholine MeSH Browser
- Cytochrome P-450 CYP1A2 MeSH
- Phosphatidylcholines MeSH
- Phospholipids MeSH
Balkan endemic nephropathy (BEN) is a unique, chronic renal disease frequently associated with upper urothelial cancer (UUC). It only affects residents of specific farming villages located along tributaries of the Danube River in Bosnia-Herzegovina, Croatia, Macedonia, Serbia, Bulgaria, and Romania where it is estimated that ~100,000 individuals are at risk of BEN, while ~25,000 have the disease. This review summarises current findings on the aetiology of BEN. Over the last 50 years, several hypotheses on the cause of BEN have been formulated, including mycotoxins, heavy metals, viruses, and trace-element insufficiencies. However, recent molecular epidemiological studies provide a strong case that chronic dietary exposure to aristolochic acid (AA) a principal component of Aristolochia clematitis which grows as a weed in the wheat fields of the endemic regions is the cause of BEN and associated UUC. One of the still enigmatic features of BEN that need to be resolved is why the prevalence of BEN is only 3-7 %. This suggests that individual genetic susceptibilities to AA exist in humans. In fact dietary ingestion of AA along with individual genetic susceptibility provides a scenario that plausibly can explain all the peculiarities of BEN such as geographical distribution and high risk of urothelial cancer. For the countries harbouring BEN implementing public health measures to avoid AA exposure is of the utmost importance because this seems to be the best way to eradicate this once mysterious disease to which the residents of BEN villages have been completely and utterly at mercy for so long.
- Keywords
- Aristolochic acid, Aristolochic acid nephropathy, Balkan endemic nephropathy, Disease aetiology, Environmental and genetic factors, Upper urothelial cancer,
- MeSH
- Aristolochia chemistry growth & development toxicity MeSH
- Balkan Nephropathy chemically induced epidemiology physiopathology prevention & control MeSH
- Diet adverse effects MeSH
- Endemic Diseases * MeSH
- Confounding Factors, Epidemiologic MeSH
- Carcinogens, Environmental analysis toxicity MeSH
- Food Contamination * prevention & control MeSH
- Aristolochic Acids analysis toxicity MeSH
- Kidney drug effects physiopathology MeSH
- Drug Resistance MeSH
- Humans MeSH
- Evidence-Based Medicine * MeSH
- Flour adverse effects analysis MeSH
- Plant Weeds chemistry growth & development toxicity MeSH
- Prevalence MeSH
- Triticum growth & development MeSH
- Risk MeSH
- Seeds growth & development MeSH
- Urologic Neoplasms chemically induced epidemiology physiopathology prevention & control MeSH
- Crops, Agricultural growth & development MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Geographicals
- Europe, Eastern epidemiology MeSH
- Names of Substances
- aristolochic acid I MeSH Browser
- Carcinogens, Environmental MeSH
- Aristolochic Acids MeSH