Nejvíce citovaný článek - PubMed ID 19238442
In vitro cultivation of early schistosomula of nasal and visceral bird schistosomes (Trichobilharzia spp., Schistosomatidae)
BACKGROUND: Avian schistosomes, the causative agents of human cercarial dermatitis (or swimmer's itch), die in mammals but the mechanisms responsible for parasite elimination are unknown. Here we examined the role of reactive nitrogen species, nitric oxide (NO) and peroxynitrite, in the immune response of mice experimentally infected with Trichobilharzia regenti, a model species of avian schistosomes remarkable for its neuropathogenicity. METHODS: Inducible NO synthase (iNOS) was localized by immunohistochemistry in the skin and the spinal cord of mice infected by T. regenti. The impact of iNOS inhibition by aminoguanidine on parasite burden and growth was then evaluated in vivo. The vulnerability of T. regenti schistosomula to NO and peroxynitrite was assessed in vitro by viability assays and electron microscopy. Additionally, the effect of NO on the activity of T. regenti peptidases was tested using a fluorogenic substrate. RESULTS: iNOS was detected around the parasites in the epidermis 8 h post-infection and also in the spinal cord 3 days post-infection (dpi). Inhibition of iNOS resulted in slower parasite growth 3 dpi, but the opposite effect was observed 7 dpi. At the latter time point, moderately increased parasite burden was also noticed in the spinal cord. In vitro, NO did not impair the parasites, but inhibited the activity of T. regenti cathepsins B1.1 and B2, the peptidases essential for parasite migration and digestion. Peroxynitrite severely damaged the surface tegument of the parasites and decreased their viability in vitro, but rather did not participate in parasite clearance in vivo. CONCLUSIONS: Reactive nitrogen species, specifically NO, do not directly kill T. regenti in mice. NO promotes the parasite growth soon after penetration (3 dpi), but prevents it later (7 dpi) when also suspends the parasite migration in the CNS. NO-related disruption of the parasite proteolytic machinery is partly responsible for this effect.
- Klíčová slova
- 3-Nitrotyrosine, Cathepsin B, Nitric oxide, Nitric oxide synthase, Peroxynitrite, Schistosomatidae, Trichobilharzia,
- MeSH
- centrální nervový systém parazitologie MeSH
- guanidiny farmakologie MeSH
- infekce červy třídy Trematoda farmakoterapie MeSH
- kůže parazitologie MeSH
- kyselina peroxydusitá farmakologie MeSH
- lidé MeSH
- mícha parazitologie MeSH
- myši MeSH
- oxid dusnatý farmakologie MeSH
- proteasy účinky léků metabolismus MeSH
- proteiny červů účinky léků metabolismus MeSH
- ptáci parazitologie MeSH
- Schistosoma účinky léků růst a vývoj patogenita MeSH
- Schistosomatidae účinky léků růst a vývoj patogenita MeSH
- schistosomóza farmakoterapie MeSH
- synthasa oxidu dusnatého účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- guanidiny MeSH
- kyselina peroxydusitá MeSH
- oxid dusnatý MeSH
- pimagedine MeSH Prohlížeč
- proteasy MeSH
- proteiny červů MeSH
- synthasa oxidu dusnatého MeSH
The invasive larvae (cercariae) of schistosomes penetrate the skin of their definitive hosts. During the invasion, they undergo dramatic ultrastructural and physiological transitions. These changes result in the development of the subsequent stage, schistosomulum, which migrates through host tissues in close contact with host's immune system. One of the striking changes in the transforming cercariae is the shedding of their thick tegumental glycocalyx, which represents an immunoattractive structure; therefore its removal helps cercariae to avoid immune attack. A set of commercial fluorescently labeled lectin probes, their saccharide inhibitors and monoclonal antibodies against the trisaccharide Lewis-X antigen (LeX, CD15) were used to characterize changes in the surface saccharide composition of the neuropathogenic avian schistosome Trichobilharzia regenti during the transformation of cercariae to schistosomula, both in vitro and in vivo. The effect of various lectins on glycocalyx shedding was evaluated microscopically. The involvement of peptidases and their inhibitors on the shedding of glycocalyx was investigated using T. regenti recombinant cathepsin B2 and a set of peptidase inhibitors. The surface glycocalyx of T. regenti cercariae was rich in fucose and mannose/glucose residues. After the transformation of cercariae in vitro or in vivo within their specific duck host, reduction and vanishing of these epitopes was observed, and galactose/N-acetylgalactosamine emerged. The presence of LeX was not observed on the cercariae, but the antigen was gradually expressed from the anterior part of the body in the developing schistosomula. Some lectins which bind to the cercarial surface also induced secretion from the acetabular penetration glands. Seven lectins induced the shedding of glycocalyx by cercariae, among which five bound strongly to cercarial surface; the effect could be blocked by saccharide inhibitors. Mannose-binding protein, part of the lectin pathway of the complement system, also bound to cercariae and schistosomula, but had little effect on glycocalyx shedding. Our study did not confirm the involvement of proteolysis in glycocalyx shedding.
- MeSH
- glykokalyx metabolismus MeSH
- glykosylace MeSH
- Schistosomatidae metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Helminth neuroinfections represent a serious health problem, but host immune mechanisms in the nervous tissue often remain undiscovered. This study aims at in vitro characterization of the response of murine astrocytes and microglia exposed to Trichobilharzia regenti which is a neuropathogenic schistosome migrating through the central nervous system of vertebrate hosts. Trichobilharzia regenti infects birds and mammals in which it may cause severe neuromotor impairment. This study was focused on astrocytes and microglia as these are immunocompetent cells of the nervous tissue and their activation was recently observed in T. regenti-infected mice. RESULTS: Primary astrocytes and microglia were exposed to several stimulants of T. regenti origin. Living schistosomulum-like stages caused increased secretion of IL-6 in astrocyte cultures, but no changes in nitric oxide (NO) production were noticed. Nevertheless, elevated parasite mortality was observed in these cultures. Soluble fraction of the homogenate from schistosomulum-like stages stimulated NO production by both astrocytes and microglia, and IL-6 and TNF-α secretion in astrocyte cultures. Similarly, recombinant cathepsins B1.1 and B2 triggered IL-6 and TNF-α release in astrocyte and microglia cultures, and NO production in astrocyte cultures. Stimulants had no effect on production of anti-inflammatory cytokines IL-10 or TGF-β1. CONCLUSIONS: Both astrocytes and microglia are capable of production of NO and proinflammatory cytokines IL-6 and TNF-α following in vitro exposure to various stimulants of T. regenti origin. Astrocytes might be involved in triggering the tissue inflammation in the early phase of T. regenti infection and are proposed to participate in destruction of migrating schistosomula. However, NO is not the major factor responsible for parasite damage. Both astrocytes and microglia can be responsible for the nervous tissue pathology and maintaining the ongoing inflammation since they are a source of NO and proinflammatory cytokines which are released after exposure to parasite antigens.
- Klíčová slova
- Anti-inflammatory cytokines, Astrocytes, Avian schistosome, Cathepsin B, Microglia, Neuroinfection, Nitric oxide, Proinflammatory cytokines, Trichobilharzia regenti,
- MeSH
- astrocyty imunologie parazitologie MeSH
- interleukin-6 metabolismus MeSH
- kultivované buňky MeSH
- myši MeSH
- neuroglie imunologie parazitologie MeSH
- oxid dusnatý metabolismus MeSH
- Schistosomatidae imunologie MeSH
- TNF-alfa metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- interleukin-6, mouse MeSH Prohlížeč
- interleukin-6 MeSH
- oxid dusnatý MeSH
- TNF-alfa MeSH
To date, most molecular investigations of schistosomatids have focused principally on blood flukes (schistosomes) of humans. Despite the clinical importance of cercarial dermatitis in humans caused by Trichobilharzia regenti and the serious neuropathologic disease that this parasite causes in its permissive avian hosts and accidental mammalian hosts, almost nothing is known about the molecular aspects of how this fluke invades its hosts, migrates in host tissues and how it interacts with its hosts' immune system. Here, we explored selected aspects using a transcriptomic-bioinformatic approach. To do this, we sequenced, assembled and annotated the transcriptome representing two consecutive life stages (cercariae and schistosomula) of T. regenti involved in the first phases of infection of the avian host. We identified key biological and metabolic pathways specific to each of these two developmental stages and also undertook comparative analyses using data available for taxonomically related blood flukes of the genus Schistosoma. Detailed comparative analyses revealed the unique involvement of carbohydrate metabolism, translation and amino acid metabolism, and calcium in T. regenti cercariae during their invasion and in growth and development, as well as the roles of cell adhesion molecules, microaerobic metabolism (citrate cycle and oxidative phosphorylation), peptidases (cathepsins) and other histolytic and lysozomal proteins in schistosomula during their particular migration in neural tissues of the avian host. In conclusion, the present transcriptomic exploration provides new and significant insights into the molecular biology of T. regenti, which should underpin future genomic and proteomic investigations of T. regenti and, importantly, provides a useful starting point for a range of comparative studies of schistosomatids and other trematodes.
- MeSH
- biologická adaptace * MeSH
- interakce hostitele a patogenu * MeSH
- kachny parazitologie MeSH
- metabolické sítě a dráhy genetika MeSH
- molekulární sekvence - údaje MeSH
- Schistosomatidae genetika růst a vývoj MeSH
- sekvenční analýza DNA MeSH
- stadia vývoje MeSH
- stanovení celkové genové exprese * MeSH
- výpočetní biologie * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis.
- MeSH
- biodiverzita MeSH
- epidemický výskyt choroby MeSH
- hostitelská specificita MeSH
- lidé MeSH
- nemoci ptáků parazitologie přenos MeSH
- parazitární onemocnění kůže epidemiologie imunologie parazitologie prevence a kontrola MeSH
- ptáci MeSH
- schistosomóza epidemiologie imunologie parazitologie prevence a kontrola MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH