Nejvíce citovaný článek - PubMed ID 19606141
The eggs of the blood fluke Schistosoma mansoni are the main cause of the clinical manifestations of chronic schistosomiasis. After laying, the egg "winners" attach to the endothelium of the mesenteric vein and, after a period of development, induce the growth of a small granuloma, which facilitates their passage to the intestinal lumen. Egg "losers" carried by the bloodstream to non-specific tissues also undergo full development and induce large granuloma formation, but their life ends there. Although these trapped eggs represent a dead end in the parasite life cycle, the vast majority of studies attempting to describe the biology of the S. mansoni eggs have studied these liver-trapped "losers" instead of migrating intestinal "winners". This raises the fundamental question of how these eggs differ. With robust comparative transcriptomic analysis performed on S. mansoni eggs isolated 7 weeks post infection, we show that gene expression is critically dependent on tissue localization, both in the early and late stages of development. While mitochondrial genes and venom allergen-like proteins are significantly upregulated in mature intestinal eggs, well-described egg immunomodulators IPSE/alpha-1 and omega-1, together with micro-exon genes, are predominantly expressed in liver eggs. In addition, several proteases and protease inhibitors previously implicated in egg-host interactions display clear tissue-specific gene expression patterns. These major differences in gene expression could be then reflected in the observed different ability of liver and intestinal soluble egg antigens to elicit host immune responses and in the shorter viability of miracidia hatched from liver eggs. Our comparative analysis provides a new perspective on the biology of parasite's eggs in the context of their development and tissue localization. These findings could contribute to a broader and more accurate understanding of parasite eggs interactions with the host, which have historically been often restricted to liver eggs and sometimes inaccurately generalized.
- MeSH
- antigeny helmintové imunologie MeSH
- játra * parazitologie imunologie metabolismus MeSH
- myši MeSH
- ovum metabolismus imunologie MeSH
- proteiny červů genetika metabolismus imunologie MeSH
- Schistosoma mansoni * imunologie genetika MeSH
- schistosomiasis mansoni * imunologie parazitologie MeSH
- střeva parazitologie imunologie MeSH
- vaječné proteiny MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny helmintové MeSH
- IPSE protein, Schistosoma mansoni MeSH Prohlížeč
- proteiny červů MeSH
- vaječné proteiny MeSH
Genome sequencing of the human parasite Schistosoma mansoni revealed an interesting gene superfamily, called micro-exon gene (meg), that encodes secreted MEG proteins. The genes are composed of short exons (3-81 base pairs) regularly interspersed with long introns (up to 5 kbp). This article recollects 35 S. mansoni specific meg genes that are distributed over 7 autosomes and one pair of sex chromosomes and that code for at least 87 verified MEG proteins. We used various bioinformatics tools to produce an optimal alignment and propose a phylogenetic analysis. This work highlighted intriguing conserved patterns/motifs in the sequences of the highly variable MEG proteins. Based on the analyses, we were able to classify the verified MEG proteins into two subfamilies and to hypothesize their duplication and colonization of all the chromosomes. Together with motif identification, we also proposed to revisit MEGs' common names and annotation in order to avoid duplication, to help the reproducibility of research results and to avoid possible misunderstandings.
- Klíčová slova
- Schistosoma mansoni, gene annotation, micro-exon genes (MEG), phylogeny,
- MeSH
- exony genetika MeSH
- fylogeneze MeSH
- lidé MeSH
- mapování chromozomů MeSH
- reprodukovatelnost výsledků MeSH
- Schistosoma mansoni * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Micro-Exon Genes are a widespread class of genes known for their high variability, widespread in the genome of parasitic trematodes such as Schistosoma mansoni. In this study, we present a strategy that allowed us to solve the structures of three alternatively spliced isoforms from the Schistoma mansoni MEG 2.1 family for the first time. All isoforms are hydrophobic, intrinsically disordered, and recalcitrant to be expressed in high yield in heterologous hosts. We resorted to the chemical synthesis of shorter pieces, before reconstructing the entire sequence. Here, we show that isoform 1 partially folds in a-helix in the presence of trifluoroethanol while isoform 2 features two rigid elbows, that maintain the peptide as disordered, preventing any structuring. Finally, isoform 3 is dominated by the signal peptide, which folds into a-helix. We demonstrated that combining biophysical techniques, like circular dichroism and nuclear magnetic resonance at natural abundance, with in silico molecular dynamics simulation for isoform 1 only, was the key to solve the structure of MEG 2.1. Our results provide a crucial piece to the puzzle of this elusive and highly variable class of proteins.
- MeSH
- exony genetika MeSH
- peptidy * metabolismus MeSH
- protein - isoformy genetika MeSH
- Schistosoma mansoni * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- peptidy * MeSH
- protein - isoformy MeSH
BACKGROUND: Monogenea (Platyhelminthes, Neodermata) are the most species-rich class within the Neodermata superclass of primarily fish parasites. Despite their economic and ecological importance, monogenean research tends to focus on their morphological, phylogenetic, and population characteristics, while comprehensive omics analyses aimed at describing functionally important molecules are few and far between. We present a molecular characterisation of monogenean representative Eudiplozoon nipponicum, an obligate haematophagous parasite infecting the gills of the common carp. We report its nuclear and mitochondrial genomes, present a functional annotation of protein molecules relevant to the molecular and biochemical aspect of physiological processes involved in interactions with the fish hosts, and re-examinate the taxonomic position of Eudiplozoon species within the Diplozoidae family. RESULTS: We have generated 50.81 Gbp of raw sequencing data (Illumina and Oxford Nanopore reads), bioinformatically processed, and de novo assembled them into a genome draft 0.94 Gbp long, consisting of 21,044 contigs (N50 = 87 kbp). The final assembly represents 57% of the estimated total genome size (~ 1.64 Gbp), whereby repetitive and low-complexity regions account for ~ 64% of the assembled length. In total, 36,626 predicted genes encode 33,031 proteins and homology-based annotation of protein-coding genes (PCGs) and proteins characterises 14,785 (44.76%) molecules. We have detected significant representation of functional proteins and known molecular functions. The numbers of peptidases and inhibitors (579 proteins), characterised GO terms (16,016 unique assigned GO terms), and identified KEGG Orthology (4,315 proteins) acting in 378 KEGG pathways demonstrate the variety of mechanisms by which the parasite interacts with hosts on a macromolecular level (immunomodulation, feeding, and development). Comparison between the newly assembled E. nipponicum mitochondrial genome (length of 17,038 bp) and other diplozoid monogeneans confirms the existence of two distinct Eudiplozoon species infecting different fish hosts: Cyprinus carpio and Carassius spp. CONCLUSIONS: Although the amount of sequencing data and characterised molecules of monogenean parasites has recently increased, a better insight into their molecular biology is needed. The E. nipponicum nuclear genome presented here, currently the largest described genome of any monogenean parasite, represents a milestone in the study of monogeneans and their molecules but further omics research is needed to understand these parasites' biological nature.
- Klíčová slova
- Annotation, Assembly, Genome, Helminths, Host–parasite interaction, Illumina, Mitochondrial genome, Monogenea, Nanopore, Sequencing,
- MeSH
- fylogeneze MeSH
- genomika MeSH
- kapři * genetika MeSH
- paraziti * MeSH
- Trematoda * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Parasitic helminths infecting humans are highly prevalent infecting ∼2 billion people worldwide, causing inflammatory responses, malnutrition and anemia that are the primary cause of morbidity. In addition, helminth infections of cattle have a significant economic impact on livestock production, milk yield and fertility. The etiological agents of helminth infections are mainly Nematodes (roundworms) and Platyhelminths (flatworms). G-quadruplexes (G4) are unusual nucleic acid structures formed by G-rich sequences that can be recognized by specific G4 ligands. Here we used the G4Hunter Web Tool to identify and compare potential G4 sequences (PQS) in the nuclear and mitochondrial genomes of various helminths to identify G4 ligand targets. PQS are nonrandomly distributed in these genomes and often located in the proximity of genes. Unexpectedly, a Nematode, Ascaris lumbricoides, was found to be highly enriched in stable PQS. This species can tolerate high-stability G4 structures, which are not counter selected at all, in stark contrast to most other species. We experimentally confirmed G4 formation for sequences found in four different parasitic helminths. Small molecules able to selectively recognize G4 were found to bind to Schistosoma mansoni G4 motifs. Two of these ligands demonstrated potent activity both against larval and adult stages of this parasite.
- MeSH
- cizopasní červi genetika MeSH
- G-kvadruplexy * MeSH
- genom MeSH
- hlístice * genetika MeSH
- lidé MeSH
- ligandy MeSH
- paraziti genetika MeSH
- ploštěnci * genetika MeSH
- skot MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ligandy MeSH
BACKGROUND: The blood flukes of genus Schistosoma are the causative agent of schistosomiasis, a parasitic disease that infects more than 200 million people worldwide. Proteases of schistosomes are involved in critical steps of host-parasite interactions and are promising therapeutic targets. We recently identified and characterized a group of S1 family Schistosoma mansoni serine proteases, including SmSP1 to SmSP5. Expression levels of some SmSPs in S. mansoni are low, and by standard genome sequencing technologies they are marginally detectable at the method threshold levels. Here, we report their spatial gene expression patterns in adult S. mansoni by the high-sensitivity localization assay. METHODOLOGY: Highly sensitive fluorescence in situ RNA hybridization (FISH) was modified and used for the localization of mRNAs encoding individual SmSP proteases (including low-expressed SmSPs) in tissues of adult worms. High sensitivity was obtained due to specifically prepared tissue and probes in combination with the employment of a signal amplification approach. The assay method was validated by detecting the expression patterns of a set of relevant reference genes including SmCB1, SmPOP, SmTSP-2, and Sm29 with localization formerly determined by other techniques. RESULTS: FISH analysis revealed interesting expression patterns of SmSPs distributed in multiple tissues of S. mansoni adults. The expression patterns of individual SmSPs were distinct but in part overlapping and were consistent with existing transcriptome sequencing data. The exception were genes with significantly low expression, which were also localized in tissues where they had not previously been detected by RNA sequencing methods. In general, SmSPs were found in various tissues including reproductive organs, parenchymal cells, esophagus, and the tegumental surface. CONCLUSIONS: The FISH-based assay provided spatial information about the expression of five SmSPs in adult S. mansoni females and males. This highly sensitive method allowed visualization of low-abundantly expressed genes that are below the detection limits of standard in situ hybridization or by RNA sequencing. Thus, this technical approach turned out to be suitable for sensitive localization studies and may also be applicable for other trematodes. The results suggest that SmSPs may play roles in diverse processes of the parasite. Certain SmSPs expressed at the surface may be involved in host-parasite interactions.
- Klíčová slova
- Blood fluke, Fluorescence RNA in situ hybridization, Platyhelminthes, Schistosoma mansoni, Serine proteases, Transcript, mRNA detection,
- MeSH
- exprese genu * MeSH
- hybridizace in situ fluorescenční metody normy MeSH
- proteiny červů genetika MeSH
- RNA metabolismus MeSH
- Schistosoma mansoni enzymologie genetika MeSH
- serinové proteasy genetika MeSH
- stanovení celkové genové exprese MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny červů MeSH
- RNA MeSH
- serinové proteasy MeSH
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
- Klíčová slova
- Autophagosome, LC3, cancer, flux, lysosome, macroautophagy, neurodegeneration, phagophore, stress, vacuole,
- MeSH
- autofagie * fyziologie MeSH
- autofagozomy MeSH
- biologické markery MeSH
- biotest normy MeSH
- lidé MeSH
- lyzozomy MeSH
- proteiny spojené s autofagií metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- směrnice MeSH
- Názvy látek
- biologické markery MeSH
- proteiny spojené s autofagií MeSH
The tremendous diversity of Hymenoptera is commonly attributed to the evolution of parasitoidism in the last common ancestor of parasitoid sawflies (Orussidae) and wasp-waisted Hymenoptera (Apocrita). However, Apocrita and Orussidae differ dramatically in their species richness, indicating that the diversification of Apocrita was promoted by additional traits. These traits have remained elusive due to a paucity of sawfly genome sequences, in particular those of parasitoid sawflies. Here, we present comparative analyses of draft genomes of the primarily phytophagous sawfly Athalia rosae and the parasitoid sawfly Orussus abietinus. Our analyses revealed that the ancestral hymenopteran genome exhibited traits that were previously considered unique to eusocial Apocrita (e.g., low transposable element content and activity) and a wider gene repertoire than previously thought (e.g., genes for CO2 detection). Moreover, we discovered that Apocrita evolved a significantly larger array of odorant receptors than sawflies, which could be relevant to the remarkable diversification of Apocrita by enabling efficient detection and reliable identification of hosts.
- Klíčová slova
- hexamerin, major royal jelly protein, microsynteny, odorant receptor, opsin, phytophagy,
- MeSH
- býložravci genetika MeSH
- genom hmyzu * MeSH
- genová dávka MeSH
- glykoproteiny genetika MeSH
- hmyzí proteiny genetika MeSH
- Hymenoptera genetika MeSH
- imunita genetika MeSH
- interakce hostitele a parazita genetika MeSH
- konzervovaná sekvence MeSH
- multigenová rodina MeSH
- receptory pachové genetika MeSH
- sekvence aminokyselin MeSH
- sociální chování MeSH
- transpozibilní elementy DNA MeSH
- vznik druhů (genetika) * MeSH
- zrak genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- srovnávací studie MeSH
- Názvy látek
- glykoproteiny MeSH
- hmyzí proteiny MeSH
- MRJP1 protein, Apis mellifera MeSH Prohlížeč
- receptory pachové MeSH
- storage proteins, Insecta MeSH Prohlížeč
- transpozibilní elementy DNA MeSH
Trichobilharzia species are parasitic flatworms (called schistosomes or flukes) that cause important diseases in birds and humans, but very little is known about their molecular biology. Here, using a transcriptomics-bioinformatics-based approach, we explored molecular aspects pertaining to the nutritional requirements of Trichobilharzia szidati ('visceral fluke') and T. regenti ('neurotropic fluke') in their avian host. We studied the larvae of each species before they enter (cercariae) and as they migrate (schistosomules) through distinct tissues in their avian (duck) host. Cercariae of both species were enriched for pathways or molecules associated predominantly with carbohydrate metabolism, oxidative phosphorylation and translation of proteins linked to ribosome biogenesis, exosome production and/or lipid biogenesis. Schistosomules of both species were enriched for pathways or molecules associated with processes including signal transduction, cell turnover and motility, DNA replication and repair, molecular transport and/or catabolism. Comparative informatic analyses identified molecular repertoires (within, e.g., peptidases and secretory proteins) in schistosomules that can broadly degrade macromolecules in both T. szidati and T. regenti, and others that are tailored to each species to selectively acquire nutrients from particular tissues through which it migrates. Thus, this study provides molecular evidence for distinct modes of nutrient acquisition between the visceral and neurotropic flukes of birds.
- MeSH
- cerkárie klasifikace genetika patogenita MeSH
- DNA helmintů klasifikace genetika MeSH
- fylogeneze * MeSH
- kachny genetika parazitologie MeSH
- lidé MeSH
- nemoci ptáků genetika parazitologie MeSH
- ptáci genetika parazitologie MeSH
- Schistosomatidae genetika patogenita MeSH
- schistosomóza genetika parazitologie MeSH
- Trematoda klasifikace genetika patogenita MeSH
- výpočetní biologie MeSH
- živiny MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA helmintů MeSH
BACKGROUND: Serine proteases are important virulence factors for many pathogens. Recently, we discovered a group of trypsin-like serine proteases with domain organization unique to flatworm parasites and containing a thrombospondin type 1 repeat (TSR-1). These proteases are recognized as antigens during host infection and may prove useful as anthelminthic vaccines, however their molecular characteristics are under-studied. Here, we characterize the structural and proteolytic attributes of serine protease 2 (SmSP2) from Schistosoma mansoni, one of the major species responsible for the tropical infectious disease, schistosomiasis. METHODOLOGY/PRINCIPAL FINDINGS: SmSP2 comprises three domains: a histidine stretch, TSR-1 and a serine protease domain. The cleavage specificity of recombinant SmSP2 was determined using positional scanning and multiplex combinatorial libraries and the determinants of specificity were identified with 3D homology models, demonstrating a trypsin-like endopeptidase mode of action. SmSP2 displayed restricted proteolysis on protein substrates. It activated tissue plasminogen activator and plasminogen as key components of the fibrinolytic system, and released the vasoregulatory peptide, kinin, from kininogen. SmSP2 was detected in the surface tegument, esophageal glands and reproductive organs of the adult parasite by immunofluorescence microscopy, and in the excretory/secretory products by immunoblotting. CONCLUSIONS/SIGNIFICANCE: The data suggest that SmSP2 is secreted, functions at the host-parasite interface and contributes to the survival of the parasite by manipulating host vasodilatation and fibrinolysis. SmSP2 may be, therefore, a potential target for anti-schistosomal therapy.
- MeSH
- fibrinolýza účinky léků MeSH
- hemokoagulace účinky léků MeSH
- hemostatika antagonisté a inhibitory MeSH
- krevní tlak účinky léků MeSH
- molekulární modely MeSH
- plazminogen účinky léků MeSH
- proteinové domény MeSH
- proteiny červů chemie genetika farmakologie MeSH
- proteolýza účinky léků MeSH
- rekombinantní proteiny MeSH
- Schistosoma mansoni enzymologie MeSH
- schistosomiasis mansoni parazitologie MeSH
- sekvence aminokyselin MeSH
- serinové endopeptidasy chemie genetika farmakologie MeSH
- tkáňový aktivátor plazminogenu účinky léků MeSH
- vazodilatace účinky léků MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hemostatika MeSH
- plazminogen MeSH
- proteiny červů MeSH
- rekombinantní proteiny MeSH
- serinové endopeptidasy MeSH
- tkáňový aktivátor plazminogenu MeSH
- trypsin-like serine protease MeSH Prohlížeč