Nejvíce citovaný článek - PubMed ID 21318013
Forage as a primary source of mycotoxins in animal diets
Silage has been identified as a source of different microbial toxins, that may impair farm animal health and productivity as human health can also be compromised. In this sense, the aim of this study was to determine the impact of silage additives on the concentrations of deoxynivalenol (DON) and zearalenone (ZEN) mycotoxins and, eventually, to evaluate the hygienic quality of orchardgrass (Dactylis glomerata L.) silage based on the concentration of them compared to control silage. This study evaluated the influence of biological and chemical additives used in six different varieties of orchardgrass silage on DON and ZEN mycotoxin contents for the first time. The content of both fusariotoxins (DON and ZEN) in fresh matter and grass silage were below the threshold stipulated by the European Commission. The concentration of DON ranges from ~21.86 to 37.26 ng/kg, ~10.21 to 15 ng/kg, ~20.72 to 29.14 ng/kg; and ZEN range from ~3.42 to 7.87 ng/kg, ~3.85 to 8.62 ng/kg and ~2.15 to 5.08 ng/kg, in control, biological and chemical silages, respectively. In general, the biological additive was more efficient for preventing DON contamination, whereas the chemical additive was more efficient for preventing ZEN contamination in grass silage. In summary, the results obtained in this work demonstrate that biological and chemical additives can inhibit fungal growth and mycotoxin production on Dactylis glomerata L. silage and whose use could prevent animal and human diseases.
- MeSH
- Dactylis * metabolismus MeSH
- mykotoxiny * biosyntéza analýza MeSH
- siláž * analýza mikrobiologie MeSH
- trichotheceny * metabolismus analýza MeSH
- zearalenon * analýza metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- deoxynivalenol MeSH Prohlížeč
- mykotoxiny * MeSH
- trichotheceny * MeSH
- zearalenon * MeSH
Mycotoxins can pose a threat to biogas production as they can contaminate the feedstock used in biogas production, such as agricultural crops and other organic materials. This research study evaluated the contents of deoxynivalenol (DON), zearalenone (ZEA), fumonisin (FUM), and aflatoxin (AFL) mycotoxins in maize silage prior to it being processed in a biogas plant and in digestate produced at the end of the anaerobic digestion (AD) process. In the experiment, three samples of silage were collected from one silage warehouse: Variant 1 = low contamination, Variant 2 = medium contamination, and Variant 3 = heavy contamination, which were subjected to investigation. A significantly reduced biogas production was recorded that was proportional to the increasing contamination with molds, which was primarily due to the AD of silage caused by technologically erroneous silage treatment. The AD was connected with changes in silage composition expressed by the values of VS content, sugar content, lactic acid content, acetic acid content, and the ratio of lactic acid content to acetic acid content. The production of biogas and methane decreased with the increasing contents of NDF, ADF, CF, and lignin. The only exception was Variant 2, in which the content of ADF, CF, and lignin was lower (by 8-11%) than that in Variant 1, and only the content of NDF was higher (by 9%) than that in Variant 1. A secondary factor that also correlated with changes in the composition of the substrate was the development of undesirable organisms, which further contributed to its degradation and to the production of mycotoxins. It was also demonstrated in this study that during the AD process, the tested mycotoxins were degraded, and their content was reduced by 27-100%. Only the variant with low mold contamination showed a DON concentration increase of 27.8%.
- Klíčová slova
- anaerobic biogas, anaerobic digestion, digestate, maize silage, methane, mycotoxins,
- Publikační typ
- časopisecké články MeSH
The ergosterol (ERG) has been proposed as a potential indicator of fungal contamination, along with polyphenol content analysis to predict silage safety. Despite efforts in controlling fungal growth in silage, mycotoxin co-contamination represents a possible risk for animal and human health. Modern analytical techniques determine a multitude of fungal metabolites contaminating feed. Nonetheless, these methods require sometimes arduous sample pre-treatment, long separation times, and expensive standard compounds to identified contaminants. Thus, the goal of this study was to suggest a rapid analysis of ERG and polyphenol contents to assess silage hygienic quality in ten orchardgrass varieties ensiled without and with biological and chemical additives. The determination of ERG on samples was performed by high-performance liquid chromatography using UV detection and UV/Vis spectrophotometry to determine the polyphenol content. Statistically significant differences (P < 0.05) between varieties, years and silage additives were found. Bepro was the unique variety that did not present ERG in the first cut in 2012. ERG content increased in the first cut in 2013 using biological additives as well as ERG and polyphenol contents in the first cut in 2013 using chemical additives compared with untreated silage. In addition, biological and chemical additives used in this study did not satisfactorily reduce the content of ERG and polyphenols in silage grass. Consequently, our results provide fast information about the progressive fungal contamination of grass silage. To our knowledge, it is the first time that the presence of ERG and polyphenols is determined in ten different orchardgrass varieties treated without and with additives. In general, ERG and polyphenol contents showed to be good indicators of orchardgrass silage safety.
- Klíčová slova
- Additives, Dactylis glomerata, Fungal marker, Livestock, Silage quality,
- Publikační typ
- časopisecké články MeSH
In the production of fermented feed, each crop can be contaminated with a variety of microorganisms that may produce natural pollutants. Biogenic amines, mycotoxins, and undesirable organic acids can decrease health feed safety. The aim of this study was to compare the counts of microorganisms, levels of biogenic amines, and the mycotoxins in forage legumes, and also to compare the occurrence of microorganisms and levels of mycotoxins in green fodder and subsequently produced silage and the influence of additives on the content of natural harmful substances in silage. The experimental plot was located in Troubsko and Vatín, in the Czech Republic. Two varieties of Medicago sativa and one variety of Trifolium pratense were compared. Green fodder and subsequently produced silage reaching up to 23% of dry matter were evaluated and prepared using a bio-enzymatic additive and a chemical additive. Green fodder of Medicago sativa was more contaminated by Enterococci than Trifolium pratense fodder. The obvious difference was determined by the quality of silage leachate. The silage prepared from Medicago sativa fodder was more contaminated with butyric acid. Fungi were present in higher counts in the anaerobic environment of green fodder and contaminated it with zearalenone and deoxynivalenol. Lower counts of fungi were found in silage, although the zearalenone content did not change. Lower content of deoxynivalenol was detected in silage, compared with green fodder. Silages treated with a chemical additive were found not to contain butyric acid. Lower ethanol content was determined, and the tendency to reduce the risk of biogenic amines occurrence was evident. The additives proved to have no influence on the content of mycotoxins.
- Klíčová slova
- biological additives, butyric acid, cadaverine, chemical additives, deoxynivalenol, enterococci, fungi, green matter, putrescine, silage, spermine, tyramine, zearalenone,
- MeSH
- biogenní aminy chemie MeSH
- fermentace MeSH
- kontaminace potravin prevence a kontrola MeSH
- krmivo pro zvířata mikrobiologie MeSH
- Medicago sativa chemie mikrobiologie MeSH
- mykotoxiny chemie MeSH
- potravinářské přísady farmakologie MeSH
- siláž analýza mikrobiologie MeSH
- Trifolium chemie mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- biogenní aminy MeSH
- mykotoxiny MeSH
- potravinářské přísady MeSH
Mycotoxins are secondary metabolites produced by fungal species that have harmful effects on mammals. The aim of this study was to assess the content of mycotoxins in fresh-cut material of selected forage grass species both during and at the end of the growing season. We further assessed mycotoxin content in subsequently produced first-cutting silages with respect to the species used in this study: Lolium perenne (cv. Kentaur), Festulolium pabulare (cv. Felina), Festulolium braunii (cv. Perseus), and mixtures of these species with Festuca rubra (cv. Gondolin) or Poa pratensis (Slezanka). The mycotoxins deoxynivalenol, zearalenone and T-2 toxin were mainly detected in the fresh-cut grass material, while fumonisin and aflatoxin contents were below the detection limits. July and October were the most risky periods for mycotoxins to occur. During the cold temperatures in November and December, the occurrence of mycotoxins in fresh-cut material declined. Although June was a period with low incidence of mycotoxins in green silage, contents of deoxynivalenol and zearalenone in silages from the first cutting exceeded by several times those determined in their biomass collected directly from the field. Moreover, we observed that use of preservatives or inoculants did not prevent mycotoxin production.
- MeSH
- dobytek MeSH
- ELISA MeSH
- hodnocení rizik MeSH
- lidé MeSH
- lipnicovité mikrobiologie MeSH
- mykotoxiny analýza MeSH
- potravinářská mikrobiologie * MeSH
- roční období MeSH
- siláž mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- mykotoxiny MeSH
The aim of this study was to investigate the effect of molds on levels of low molecular mass thiols in grasses. For this purpose, the three grass species Lolium perenne, Festulolium pabulare and Festulolium braunii were cultivated and sampled during four months, from June to September. The same species were also grown under controlled conditions. High-performance liquid chromatography with electrochemical detection was used for quantification of cysteine, reduced (GSH) and oxidized (GSSG) glutathione, and phytochelatins (PC2, PC3, PC4 and PC5). Data were statistically processed and analyzed. Thiols were present in all examined grass species. The effect of fungicide treatments applied under field conditions on the content of the evaluated thiols was shown to be insignificant. Species influenced (p < 0.05) PC3 and GSSG content. F. pabulare, an intergeneric hybrid of drought- and fungi-resistant Festuca arundinacea, was comparable in PC3 content with L. perenne and F. braunii under field conditions. Under controlled conditions, however, F. pabulare had higher (p < 0.05) PC3 content than did L. perenne and F. braunii. Under field conditions, differences between the evaluated species were recorded only in GSSG content, but only sampling in June was significant. F. pabulare had higher (p < 0.05) GSSG content in June than did L. perenne and F. braunii.
- MeSH
- houby * MeSH
- lipnicovité chemie mikrobiologie MeSH
- molekulová hmotnost MeSH
- sulfhydrylové sloučeniny analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- sulfhydrylové sloučeniny MeSH