Most cited article - PubMed ID 21821113
Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants
Modern tissue engineering requires not only degradable materials promoting cell growth and differentiation, but also vascularization of the engineered tissue. Porous polylactide/polycaprolactone (PLA/PCL, ratio 3/5) foam scaffolds were prepared by a combined porogen leaching and freeze-drying technique using NaCl (crystal size 250-500 µm) and a water-soluble cellulose derivative (KlucelTM E; 10-100% w/w relative to the total PLA/PCL concentration) as porogens. Scanning electron microscopy, micro-CT, and Brunauer-Emmett-Teller analysis showed that all scaffolds contained a trimodal range of pore sizes, i.e., macropores (average diameter 298-539 μm), micropores (100 nm to 10 μm), and nanopores (mostly around 3.0 nm). All scaffolds had an open porosity of about 90%, and the pores were interconnected. The size of the macropores and the nanoporosity were higher in the scaffolds prepared with Klucel. Nanoporosity increased water uptake by the scaffolds, while macroporosity promoted cell ingrowth, which was most evident in scaffolds prepared with 25% Klucel. Human adipose-derived stem cells co-cultured with endothelial cells formed pre-vascular structures in the scaffolds, which was further enhanced in a dynamic cell culture system. The scaffolds are promising for the engineering of pre-vascularized soft tissues (relatively pliable 10% Klucel scaffolds) and hard tissues (mechanically stronger 25% and 50% Klucel scaffolds).
- Keywords
- compression stress and strain, degradable polyesters, dynamic cultivation, endothelial cells, macroporosity, mesenchymal stem cells, mineralization, nanoporosity, pre-vascularization, three-dimensional scaffolds,
- MeSH
- Biocompatible Materials chemistry MeSH
- Stem Cells cytology MeSH
- Humans MeSH
- Polyesters * chemistry MeSH
- Porosity MeSH
- Tissue Engineering * methods MeSH
- Tissue Scaffolds * chemistry MeSH
- Adipose Tissue cytology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biocompatible Materials MeSH
- poly(lactide) MeSH Browser
- polycaprolactone MeSH Browser
- Polyesters * MeSH
Pulmonary hypertension is a complex and heterogeneous condition with five main subtypes (groups). This review focuses on pulmonary hypertension caused by chronic hypoxia (hypoxic pulmonary hypertension, HPH, group 3). It is based mainly on our own experimental work, especially our collaboration with the group of Professor Herget, whose fifth anniversary of death we commemorate. We have found that oxidation and degradation of the extracellular matrix (ECM) in vitro, in either the presence or the absence of pro-inflammatory cells, activate vascular smooth muscle cell (VSMC) proliferation. Significant changes in the ECM of pulmonary arteries also occurred in vivo in hypoxic rats, namely a decrease in collagen VI and an increase in matrix metalloproteinase 9 (MMP-9) in the tunica media, which may also contribute to the growth activation of VSMCs. The proliferation of VSMCs was also enhanced in their co-culture with macrophages, most likely due to the paracrine production of growth factors in these cells. However, hypoxia itself has a dual effect: on the one hand, it can activate VSMC proliferation and hyperplasia, but on the other hand, it can also induce VSMC hypertrophy and increased expression of contractile markers in these cells. The influence of hypoxia-inducible factors, microRNAs and galectin-3 in the initiation and development of HPH, and the role of cell types other than VSMCs (endothelial cells, adventitial fibroblasts) are also discussed. Keywords: Vasoconstriction, Remodeling, Oxidation, Degradation, Extracellular matrix, Collagen, Proteolytic enzymes, Metalloproteinases, Macrophages, Mast cells, Smooth muscle cells, Endothelial cells, Fibroblasts, Mesenchymal stem cells, Hypoxia-inducible factor, microRNA, Galectins, Hyperplasia, Hypertrophy, Therapy of hypoxic pulmonary hypertension.
- MeSH
- Hypoxia * metabolism MeSH
- Humans MeSH
- Myocytes, Smooth Muscle * metabolism pathology MeSH
- Hypertension, Pulmonary * metabolism pathology MeSH
- Cell Proliferation MeSH
- Muscle, Smooth, Vascular * metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The ever-increasing demands of modern medicine drive the development of novel drug delivery materials. In particular, nanofibers are promising for such materials due to their favorable properties. However, most development is still carried out through laboratory techniques that do not allow extensive and reproducible characterization of materials, which slows medical research. In this work, we focus on the large-scale fabrication and testing of specific antibacterial nanofibrous materials to prevent the postoperative complications associated with the occurrence of bacterial infection. Poly-ε-caprolactone with gentamicin sulfate (antibiotic) in different concentrations was electrospun via a needleless device. The amount of antibiotics was proven by elemental analysis, UV spectrophotometry, and HPLC. The cytocompatibility of the materials was verified in vitro according to ISO 10993-5. The cell adhesion and proliferation were assessed after 2, 7, 14, and 21 days using the CCK-8 metabolic assay, fluorescence, and scanning electron microscopy. The tested nanofiber materials supported cell growth. Antibacterial tests were performed to confirm the release of gentamicin sulfate, and its antibacterial properties were proven toward Staphylococcus gallinarum and Escherichia coli bacteria. The effect of ethylene oxide sterilization was also studied. The sterilized nanofibrous layers are cytocompatible while antibacterial and therefore suitable for medical applications.
- Publication type
- Journal Article MeSH
One of the major goals of vascular tissue engineering is to develop much-needed materials that are suitable for use in small-diameter vascular grafts. Poly(1,8-octamethylene citrate) can be considered for manufacturing small blood vessel substitutes, as recent studies have demonstrated that this material is cytocompatible with adipose tissue-derived stem cells (ASCs) and favors their adhesion and viability. The work presented here is focused on modifying this polymer with glutathione (GSH) in order to provide it with antioxidant properties, which are believed to reduce oxidative stress in blood vessels. Cross-linked poly(1,8-octamethylene citrate) (cPOC) was therefore prepared by polycondensation of citric acid and 1,8-octanediol at a 2:3 molar ratio of the reagents, followed by in-bulk modification with 0.4, 0.8, 4 or 8 wt.% of GSH and curing at 80 °C for 10 days. The chemical structure of the obtained samples was examined by FTIR-ATR spectroscopy, which confirmed the presence of GSH in the modified cPOC. The addition of GSH increased the water drop contact angle of the material surface and lowered the surface free energy values. The cytocompatibility of the modified cPOC was evaluated in direct contact with vascular smooth-muscle cells (VSMCs) and ASCs. The cell number, the cell spreading area and the cell aspect ratio were measured. The antioxidant potential of GSH-modified cPOC was measured by a free radical scavenging assay. The results of our investigation indicate the potential of cPOC modified with 0.4 and 0.8 wt.% of GSH to produce small-diameter blood vessels, as the material was found to: (i) have antioxidant properties, (ii) support VSMC and ASC viability and growth and (iii) provide an environment suitable for the initiation of cell differentiation.
The pseudo 3D hierarchical structure mimicking in vivo microenvironment was prepared by phase separation on tissue culture plastic. For surface treatment, time-sequenced dosing of the solvent mixture with various concentrations of polymer component was used. The experiments showed that hierarchically structured surfaces with macro, meso and micro pores can be prepared with multi-step phase separation processes. Changes in polystyrene surface topography were characterized by atomic force microscopy, scanning electron microscopy and contact profilometry. The cell proliferation and changes in cell morphology were tested on the prepared structured surfaces. Four types of cell lines were used for the determination of impact of the 3D architecture on the cell behavior, namely the mouse embryonic fibroblast, human lung carcinoma, primary human keratinocyte and mouse embryonic stem cells. The increase of proliferation of embryonic stem cells and mouse fibroblasts was the most remarkable. Moreover, the embryonic stem cells express different morphology when cultured on the structured surface. The acquired findings expand the current state of knowledge in the field of cell behavior on structured surfaces and bring new technological procedures leading to their preparation without the use of problematic temporary templates or additives.
- Keywords
- foams, hierarchically structured, line-specific response, phase inversion, phase separations, stem cells, surfaces,
- MeSH
- Fibroblasts * MeSH
- Microscopy, Atomic Force MeSH
- Microscopy, Electron, Scanning MeSH
- Mice MeSH
- Polymers * chemistry MeSH
- Surface Properties MeSH
- Cell Proliferation MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Polymers * MeSH
Raman spectroscopy is one of the most used biodetection techniques. However, its usability is hampered in the case of low concentrated substances because of the weak intensity of the Raman signal. To overcome this limitation, the use of drop coating deposition Raman spectroscopy (DCDRS), in which the liquid samples are allowed to dry into well-defined patterns where the non-volatile solutes are highly concentrated, is appropriate. This significantly improves the Raman sensitivity when compared to the conventional Raman signal from solution/suspension. As DCDRS performance strongly depends on the wetting properties of substrates, we demonstrate here that the smooth hydrophobic plasma polymerized fluorocarbon films prepared by magnetron sputtering (contact angle 108°) are well-suited for the DCDRS detection of liposomes. Furthermore, it was proved that even better improvement of the Raman signal might be achieved if the plasma polymer surfaces are roughened. In this case, 100% higher intensities of Raman signal are observed in comparison with smooth fluorocarbon films. As it is shown, this effect, which has no influence on the profile of Raman spectra, is connected with the increased hydrophobicity of nanostructured fluorocarbon films. This results in the formation of dried liposomal deposits with smaller diameters and higher preconcentration of liposomes.
- Keywords
- DCDRS, drop coating deposition Raman spectroscopy, liposomes, nanostructured surfaces, plasma polymers, wettability,
- Publication type
- Journal Article MeSH
Biological hydrogels are highly promising materials for bone tissue engineering (BTE) due to their high biocompatibility and biomimetic characteristics. However, for advanced and customized BTE, precise tools for material stabilization and tuning material properties are desired while optimal mineralisation must be ensured. Therefore, reagent-free crosslinking techniques such as high energy electron beam treatment promise effective material modifications without formation of cytotoxic by-products. In the case of the hydrogel gelatin, electron beam crosslinking further induces thermal stability enabling biomedical application at physiological temperatures. In the case of enzymatic mineralisation, induced by Alkaline Phosphatase (ALP) and mediated by Calcium Glycerophosphate (CaGP), it is necessary to investigate if electron beam treatment before mineralisation has an influence on the enzymatic activity and thus affects the mineralisation process. The presented study investigates electron beam-treated gelatin hydrogels with previously incorporated ALP and successive mineralisation via incubation in a medium containing CaGP. It could be shown that electron beam treatment optimally maintains enzymatic activity of ALP which allows mineralisation. Furthermore, the precise tuning of material properties such as increasing compressive modulus is possible. This study characterizes the mineralised hydrogels in terms of mineral formation and demonstrates the formation of CaP in dependence of ALP concentration and electron dose. Furthermore, investigations of uniaxial compression stability indicate increased compression moduli for mineralised electron beam-treated gelatin hydrogels. In summary, electron beam-treated mineralized gelatin hydrogels reveal good cytocompatibility for MG-63 osteoblast like cells indicating a high potential for BTE applications.
- Keywords
- bone tissue engineering, electron beam treatment, enzymatic mineralisation, gelatin hydrogels,
- Publication type
- Journal Article MeSH
Due to its nanostructure, bacterial nanocellulose (BC) has several advantages over plant cellulose, but it exhibits weak cell adhesion. To overcome this drawback, we studied the drying method of BC and subsequent argon plasma modification (PM). BC hydrogels were prepared using the Komagataeibacter sucrofermentans (ATCC 700178) bacteria strain. The hydrogels were transformed into solid samples via air-drying (BC-AD) or lyophilization (BC-L). The sample surfaces were then modified by argon plasma. SEM revealed that compared to BC-AD, the BC-L samples maintained their nanostructure and had higher porosity. After PM, the contact angle decreased while the porosity increased. XPS showed that the O/C ratio was higher after PM. The cell culture experiments revealed that the initial adhesion of human keratinocytes (HaCaT) was supported better on BC-L, while the subsequent growth of these cells and final cell population density were higher on BC-AD. The PM improved the final colonization of both BC-L and BC-AD with HaCaT, leading to formation of continuous cell layers. Our work indicates that the surface modification of BC renders this material highly promising for skin tissue engineering and wound healing.
- Keywords
- bacterial nanocellulose, cell adhesion, lyophilization, plasma modification,
- Publication type
- Journal Article MeSH
The development of new biocompatible polymer substrates is still of interest to many research teams. We aimed to combine a plasma treatment of fluorinated ethylene propylene (FEP) substrate with a technique of improved phase separation. Plasma exposure served for substrate activation and modification of surface properties, such as roughness, chemistry, and wettability. The treated FEP substrate was applied for the growth of a honeycomb-like pattern from polystyrene solution. The properties of the pattern strongly depended on the primary plasma exposure of the FEP substrate. The physico-chemical properties such as changes of the surface chemistry, wettability, and morphology of the prepared pattern were determined. The cell response of primary fibroblasts and osteoblasts was studied on a honeycomb pattern. The prepared honeycomb-like pattern from polystyrene showed an increase in cell viability and a positive effect on cell adhesion and proliferation for both primary fibroblasts and osteoblasts.
- Keywords
- cell viability, cytocompatibility, fluorinated ethylene propylene, honeycomb-like pattern, plasma treatment, polystyrene,
- Publication type
- Journal Article MeSH
Amine-coated biodegradable materials based on synthetic polymers have a great potential for tissue remodeling and regeneration because of their excellent processability and bioactivity. In the present study, we have investigated the influence of various chemical compositions of amine plasma polymer (PP) coatings and the influence of the substrate morphology, represented by polystyrene culture dishes and polycaprolactone nanofibers (PCL NFs), on the behavior of vascular smooth muscle cells (VSMCs). Although all amine-PP coatings improved the initial adhesion of VSMCs, 7-day long cultivation revealed a clear preference for the coating containing about 15 at.% of nitrogen (CPA-33). The CPA-33 coating demonstrated the ideal combination of good water stability, a sufficient amine group content, and favorable surface wettability and morphology. The nanostructured morphology of amine-PP-coated PCL NFs successfully slowed the proliferation rate of VSMCs, which is essential in preventing restenosis of vascular replacements in vivo. At the same time, CPA-33-coated PCL NFs supported the continuous proliferation of VSMCs during 7-day long cultivation, with no significant increase in cytokine secretion by RAW 264.7 macrophages. The CPA-33 coating deposited on biodegradable PCL NFs therefore seems to be a promising material for manufacturing small-diameter vascular grafts, which are still lacking on the current market.
- Keywords
- amine plasma polymer, bioactive coating, cell adhesion, cell proliferation, polycaprolactone nanofibers, substrate morphology,
- MeSH
- Amines adverse effects chemistry immunology pharmacology MeSH
- Coated Materials, Biocompatible adverse effects chemistry pharmacology MeSH
- Cell Adhesion drug effects immunology MeSH
- Photoelectron Spectroscopy MeSH
- Plasma chemistry immunology MeSH
- Rats MeSH
- Cells, Cultured MeSH
- Macrophages drug effects metabolism MeSH
- Myocytes, Smooth Muscle drug effects metabolism MeSH
- Mice MeSH
- Nanofibers adverse effects chemistry MeSH
- Polyesters chemistry MeSH
- Polymers adverse effects chemistry pharmacology MeSH
- Surface Properties drug effects MeSH
- Cell Proliferation drug effects MeSH
- RAW 264.7 Cells MeSH
- Muscle, Smooth, Vascular cytology drug effects growth & development MeSH
- Tissue Scaffolds adverse effects chemistry MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amines MeSH
- Coated Materials, Biocompatible MeSH
- polycaprolactone MeSH Browser
- Polyesters MeSH
- Polymers MeSH