Most cited article - PubMed ID 32209603
Consensus guidelines for the definition, detection and interpretation of immunogenic cell death
Despite enormous progress, advanced cancers are still one of the most serious medical problems in current society. Although various agents and therapeutic strategies with anticancer activity are known and used, they often fail to achieve satisfactory long-term patient outcomes and survival. Recently, immunotherapy has shown success in patients by harnessing important interactions between the immune system and cancer. However, many of these therapies lead to frequent side effects when administered systemically, prompting treatment modifications or discontinuation or, in severe cases, fatalities. New therapeutic approaches like intratumoral immunotherapy, characterized by reduced side effects, cost, and systemic toxicity, offer promising prospects for future applications in clinical oncology. In the context of locally advanced or metastatic cancer, combining diverse immunotherapeutic and other treatment strategies targeting multiple cancer hallmarks appears crucial. Such combination therapies hold promise for improving patient outcomes and survival and for promoting a sustained systemic response. This review aims to provide a current overview of immunotherapeutic approaches, specifically focusing on the intratumoral administration of drugs in patients with locally advanced and metastatic cancers. It also explores the integration of intratumoral administration with other modalities to maximize therapeutic response. Additionally, the review summarizes recent advances in intratumoral immunotherapy and discusses novel therapeutic approaches, outlining future directions in the field.
- Keywords
- advanced and metastatic cancer, cancer, combination therapy, immunotherapy, intratumoral,
- MeSH
- Immunotherapy * methods MeSH
- Injections, Intralesional MeSH
- Combined Modality Therapy MeSH
- Humans MeSH
- Neoplasm Metastasis MeSH
- Neoplasms * therapy immunology pathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Immunogenic cell death (ICD) refers to an immunologically distinct process of regulated cell death that activates, rather than suppresses, innate and adaptive immune responses. Such responses culminate into T cell-driven immunity against antigens derived from dying cancer cells. The potency of ICD is dependent on the immunogenicity of dying cells as defined by the antigenicity of these cells and their ability to expose immunostimulatory molecules like damage-associated molecular patterns (DAMPs) and cytokines like type I interferons (IFNs). Moreover, it is crucial that the host's immune system can adequately detect the antigenicity and adjuvanticity of these dying cells. Over the years, several well-known chemotherapies have been validated as potent ICD inducers, including (but not limited to) anthracyclines, paclitaxels, and oxaliplatin. Such ICD-inducing chemotherapeutic drugs can serve as important combinatorial partners for anti-cancer immunotherapies against highly immuno-resistant tumors. In this Trial Watch, we describe current trends in the preclinical and clinical integration of ICD-inducing chemotherapy in the existing immuno-oncological paradigms.
- Keywords
- CAR T cells, antigen-presenting cells, chemotherapy, danger signals, dendritic cell, immune-checkpoint blockers, immunogenic cell death, immunotherapy,
- MeSH
- Cell Death MeSH
- Cytokines metabolism MeSH
- Immunogenic Cell Death MeSH
- Humans MeSH
- Neoplasms * MeSH
- Antineoplastic Agents * pharmacology therapeutic use MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Cytokines MeSH
- Antineoplastic Agents * MeSH
Immunological tolerance of myeloma cells represents a critical obstacle in achieving long-term disease-free survival for multiple myeloma (MM) patients. Over the past two decades, remarkable preclinical efforts to understand MM biology have led to the clinical approval of several targeted and immunotherapeutic agents. Among them, it is now clear that chemotherapy can also make cancer cells "visible" to the immune system and thus reactivate anti-tumor immunity. This knowledge represents an important resource in the treatment paradigm of MM, whereas immune dysfunction constitutes a clear obstacle to the cure of the disease. In this review, we highlight the importance of defining the immunological effects of chemotherapy in MM with the goal of enhancing the clinical management of patients. This area of investigation will open new avenues of research to identify novel immunogenic anti-MM agents and inform the optimal integration of chemotherapy with immunotherapy.
- Keywords
- DAMPs, ICD, immunogenic chemotherapy, microenvironment, myeloma,
- MeSH
- Immunotherapy MeSH
- Humans MeSH
- Multiple Myeloma * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
Epithelial ovarian carcinoma (EOC) is a relatively rare malignancy but is the fifth-leading cause of cancer-related death in women, largely reflecting early, prediagnosis dissemination of malignant disease to the peritoneum. At odds with other neoplasms, EOC is virtually insensitive to immune checkpoint inhibitors, correlating with a tumor microenvironment that exhibits poor infiltration by immune cells and active immunosuppression. Here, we comparatively summarize the humoral and cellular features of primary and metastatic EOC, comparatively analyze their impact on disease outcome, and propose measures to alter them in support of treatment sensitivity and superior patient survival.
- Keywords
- female, genital neoplasms, immunologic surveillance, immunotherapy, tumor biomarkers, tumor microenvironment,
- MeSH
- Carcinoma, Ovarian Epithelial immunology MeSH
- Immunosuppression Therapy methods MeSH
- Immunotherapy methods MeSH
- Humans MeSH
- Tumor Microenvironment MeSH
- Treatment Outcome MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
LTX-315 is a nonameric oncolytic peptide in early clinical development for the treatment of solid malignancies. Preclinical and clinical evidence indicates that the anticancer properties of LTX-315 originate not only from its ability to selectively kill cancer cells, but also from its capacity to promote tumor-targeting immune responses. Here, we investigated the therapeutic activity and immunological correlates of intratumoral LTX-315 administration in three syngeneic mouse models of breast carcinoma, with a focus on the identification of possible combinatorial partners. We found that breast cancer control by LTX-315 is accompanied by a reconfiguration of the immunological tumor microenvironment that supports the activation of anticancer immunity and can be boosted by radiation therapy. Mechanistically, depletion of natural killer (NK) cells compromised the capacity of LTX-315 to limit local and systemic disease progression in a mouse model of triple-negative breast cancer, and to extend the survival of mice bearing hormone-accelerated, carcinogen-driven endogenous mammary carcinomas. Altogether, our data suggest that LTX-315 controls breast cancer progression by engaging NK cell-dependent immunity.
- Keywords
- CTLA4, MPA/DMBA-driven mammary carcinomas, PD-1, TS/A cells, cDC1s, immune checkpoint inhibitors,
- MeSH
- Killer Cells, Natural MeSH
- Immunotherapy MeSH
- Humans MeSH
- Mice MeSH
- Tumor Microenvironment MeSH
- Oligopeptides * MeSH
- Triple Negative Breast Neoplasms * therapy MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- LTX-315 MeSH Browser
- Oligopeptides * MeSH
BACKGROUND: Second primary cancers (SPCs) are important clinically as they may negatively influence patient survival and they may tell about therapeutic side effects and general causes of cancer. Population-based literature concerning SPCs after hepatobiliary cancers is limited and here we assess risks of SPCs after hepatocellular cancer (HCC), and cancers of the gallbladder, bile ducts and ampulla of Vater. In reverse order, we consider the risk of hepatobiliary cancers as SPCs after any cancer. METHODS: We used standardized incidence ratios (SIRs) to estimate bidirectional relative risks of subsequent cancers associated with hepatobiliary cancers. Cancer diagnoses were obtained from the Swedish Cancer Registry from years 1990 through 2015. RESULTS: We identified 9997 primary HCCs, 1365 gallbladder cancers and 4721 bile duct cancers. After HCC, risks of four SPCs were increased: gallbladder (SIR = 4.38; 95% confidence interval 1.87-8.67), thyroid (4.13; 1.30-9.70), kidney (2.92; 1.66-4.47) and squamous cell skin (1.55; 1.02-2.26) cancers. In reverse order, HCC as SPC, in addition to the above cancers, associations included upper aerodigestive tract, esophageal, small intestinal and bladder cancers and non-Hodgkin lymphoma. For gallbladder and bile duct cancers, associations were found with small intestinal and pancreatic cancers. CONCLUSION: The results suggested that HCC is associated with two types of SPC, one related to shared environmental risk factors, such as alcohol, exemplified by upper aerodigestive tract and esophageal cancer, and the other related to immune dysfunction, exemplified by squamous cell skin cancer. SPCs associated with gallbladder and bile duct cancers suggest predisposition to mutations in the mismatch repair gene MLH1.
- Keywords
- cancer etiology, cancer incidence, hepatobiliary cancer, relative risk, second primary cancer,
- Publication type
- Journal Article MeSH
Cardiac glycosides (CGs) are natural steroid compounds occurring both in plants and animals. They are known for long as cardiotonic agents commonly used for various cardiac diseases due to inhibition of Na+/K+-ATPase (NKA) pumping activity and modulating heart muscle contractility. However, recent studies show that the portfolio of diseases potentially treatable with CGs is much broader. Currently, CGs are mostly studied as anticancer agents. Their antiproliferative properties are based on the induction of multiple signaling pathways in an NKA signalosome complex. In addition, they are strongly connected to immunogenic cell death, a complex mechanism of induction of anticancer immune response. Moreover, CGs exert various immunomodulatory effects, the foremost of which are connected with suppressing the activity of T-helper cells or modulating transcription of many immune response genes by inhibiting nuclear factor kappa B. The resulting modulations of cytokine and chemokine levels and changes in immune cell ratios could be potentially useful in treating sundry autoimmune and inflammatory diseases. This review aims to summarize current knowledge in the field of immunomodulatory properties of CGs and emphasize the large area of potential clinical use of these compounds.
- Keywords
- NKA signalosome, Th17, anticancer compounds, calreticulin, cardiac steroids, immunogenic cell death, inflammation, interleukin 17, retinoic acid receptor-related orphan receptor γ thymus, sodium-potassium ATPase,
- MeSH
- Cytokines metabolism MeSH
- Immunologic Factors pharmacology therapeutic use MeSH
- Humans MeSH
- Neoplasms drug therapy immunology MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents pharmacology therapeutic use MeSH
- Gene Expression Regulation, Neoplastic drug effects MeSH
- Signal Transduction drug effects MeSH
- Sodium-Potassium-Exchanging ATPase metabolism MeSH
- Cardiac Glycosides pharmacology therapeutic use MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Cytokines MeSH
- Immunologic Factors MeSH
- Antineoplastic Agents MeSH
- Sodium-Potassium-Exchanging ATPase MeSH
- Cardiac Glycosides MeSH
Calreticulin (CALR) is an endoplasmic reticulum (ER)-resident protein involved in a spectrum of cellular processes. In healthy cells, CALR operates as a chaperone and Ca2+ buffer to assist correct protein folding within the ER. Besides favoring the maintenance of cellular proteostasis, these cell-intrinsic CALR functions support Ca2+-dependent processes, such as adhesion and integrin signaling, and ensure normal antigen presentation on MHC Class I molecules. Moreover, cancer cells succumbing to immunogenic cell death (ICD) expose CALR on their surface, which promotes the uptake of cell corpses by professional phagocytes and ultimately supports the initiation of anticancer immunity. Thus, loss-of-function CALR mutations promote oncogenesis not only as they impair cellular homeostasis in healthy cells, but also as they compromise natural and therapy-driven immunosurveillance. However, the prognostic impact of total or membrane-exposed CALR levels appears to vary considerably with cancer type. For instance, while genetic CALR defects promote pre-neoplastic myeloproliferation, patients with myeloproliferative neoplasms bearing CALR mutations often experience improved overall survival as compared to patients bearing wild-type CALR. Here, we discuss the context-dependent impact of CALR on malignant transformation, tumor progression and response to cancer therapy.
- MeSH
- Calreticulin genetics metabolism MeSH
- Humans MeSH
- Mutation MeSH
- Myeloproliferative Disorders metabolism pathology MeSH
- Neoplasms metabolism pathology MeSH
- Antigen Presentation MeSH
- Prognosis MeSH
- Signal Transduction MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Calreticulin MeSH
Chemotherapy, radiation therapy, as well as targeted anticancer agents can induce clinically relevant tumor-targeting immune responses, which critically rely on the antigenicity of malignant cells and their capacity to generate adjuvant signals. In particular, immunogenic cell death (ICD) is accompanied by the exposure and release of numerous damage-associated molecular patterns (DAMPs), which altogether confer a robust adjuvanticity to dying cancer cells, as they favor the recruitment and activation of antigen-presenting cells. ICD-associated DAMPs include surface-exposed calreticulin (CALR) as well as secreted ATP, annexin A1 (ANXA1), type I interferon, and high-mobility group box 1 (HMGB1). Additional hallmarks of ICD encompass the phosphorylation of eukaryotic translation initiation factor 2 subunit-α (EIF2S1, better known as eIF2α), the activation of autophagy, and a global arrest in transcription and translation. Here, we outline methodological approaches for measuring ICD markers in vitro and ex vivo for the discovery of next-generation antineoplastic agents, the development of personalized anticancer regimens, and the identification of optimal therapeutic combinations for the clinical management of cancer.
- MeSH
- Immunogenic Cell Death immunology MeSH
- Immunotherapy methods MeSH
- Humans MeSH
- Neoplasms therapy MeSH
- Drug Discovery methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Antibodies targeting the co-inhibitory receptor programmed cell death 1 (PDCD1, best known as PD-1) or its main ligand CD274 (best known as PD-L1) have shown some activity in patients with metastatic triple-negative breast cancer (TNBC), especially in a recent Phase III clinical trial combining PD-L1 blockade with taxane-based chemotherapy. Despite these encouraging findings, however, most patients with TNBC fail to derive significant benefits from PD-L1 blockade, calling for the identification of novel therapeutic approaches. Here, we used the 4T1 murine mammary cancer model of metastatic and immune-resistant TNBC to test whether focal radiation therapy (RT), a powerful inducer of immunogenic cell death, in combination with various immunotherapeutic strategies can overcome resistance to immune checkpoint blockade. Our results suggest that focal RT enhances the therapeutic effects of PD-1 blockade against primary 4T1 tumors and their metastases. Similarly, the efficacy of an antibody specific for V-set immunoregulatory receptor (VSIR, another co-inhibitory receptor best known as VISTA) was enhanced by focal RT. Administration of cyclophosphamide plus RT and dual PD-1/VISTA blockade had superior therapeutic effects, which were associated with activation of tumor-infiltrating CD8+ T cells and depletion of intratumoral granulocytic myeloid-derived suppressor cells (MDSCs). Overall, these results demonstrate that RT can sensitize immunorefractory tumors to VISTA or PD-1 blockade, that this effect is enhanced by the addition of cyclophosphamide and suggest that a multipronged immunotherapeutic approach may also be required to increase the incidence of durable responses in patients with TNBC.
- Keywords
- 4T1 cells, C10orf54, CD8+ T cells, MDSCs, PD-1, TCGA, VSIR, cyclophosphamide, focal radiotherapy, immunological checkpoints, immunosurveillance, myeloid cells,
- MeSH
- CD8-Positive T-Lymphocytes MeSH
- Immunotherapy MeSH
- Humans MeSH
- Myeloid-Derived Suppressor Cells * MeSH
- Mice MeSH
- Triple Negative Breast Neoplasms * drug therapy MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH