Plant-based Dotaz Zobrazit nápovědu
The aim of the study was to analyse the key microbial contaminants of plant-based meat analogues (PBMA) from retail. A total of 43 samples of PBMAs (12 frozen/31 chilled) in the "ready-to-cook" category, such as hamburgers, meatballs or breaded imitation steaks were purchased in retail stores in the Czech Republic in summer (n = 21) and autumn 2022 (n = 22). The detected indicator bacteria (total viable count, lactic acid bacteria, Enterobacteriaceae, yeasts, moulds) had relatively low values in the analysed PBMA samples and only rarely reached levels of 7 log CFU/g. E. coli, STEC and coagulase-positive staphylococci were not detected by isolation from plates in any of analysed samples. Mannitol positive Bacillus spp. were isolated from almost half of the analysed samples of the PBMA. B. cereus sensu lato was isolated from 3 samples by isolation from plates, and after enrichment in 35 samples (81 %). Clostridium perfringens could not be detected by isolation from plates, nevertheless after multiplication, it was detected in 21 % of samples. Analyses of PBMA samples revealed considerable variability in microbial quality. The presence of spore-forming bacteria with the potential to cause foodborne diseases is alarming. However, to evaluate the risks, further research focused on the possibilities of growth under different conditions of culinary treatment and preservation is needed.
- Klíčová slova
- Bacillus cereus, Clostridium perfringens, Meat alternatives, Plant protein, Spore-forming bacteria,
- MeSH
- Bacteria * izolace a purifikace klasifikace růst a vývoj MeSH
- houby izolace a purifikace klasifikace MeSH
- kontaminace potravin * analýza MeSH
- masné výrobky mikrobiologie MeSH
- maso mikrobiologie MeSH
- náhražky masa MeSH
- počet mikrobiálních kolonií MeSH
- potravinářská mikrobiologie * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Plant-based peptides (PBPs) benefit functional food development and environmental sustainability. Proteolysis remains the primary method of peptide production because it is a mild and nontoxic technique. However, potential safety concerns still emanate from toxic or allergenic sequences, amino acid racemization, iso-peptide bond formation, Maillard reaction, dose usage, and frequency. The main aim of this review is to investigate the techno-functions of PBPs in food matrices, as well as their safety concerns. The distinctive characteristics of PBPs exhibit their techno-functions for improving food quality and functionality by contributing to several crucial food formulations and processing. The techno-functions of PBPs include solubility, hydrophobicity, bitterness, foaming, oil-binding, and water-holding capacities, which subsequently affect food matrices. The safety and quality of foodstuff containing PBPs depend on the proper source of plant proteins, the selection of processing approaches, and compliance with legal regulations for allergen labeling and safety evaluations. The safety concerns in allergenicity and toxicity were discussed. The conclusion is that food technologists must apply safe limits and consider potential allergenic components generated during the development of food products with PBPs. Therefore, functional food products containing PBPs can be a promising strategy to provide consumers with wholesome health benefits.
- Klíčová slova
- allergenicity, bitterness, food matrix, plant-based peptide, techno-function, toxicity,
- MeSH
- alergeny chemie imunologie MeSH
- bezpečnost potravin * MeSH
- funkční potraviny MeSH
- lidé MeSH
- manipulace s potravinami MeSH
- peptidy * chemie MeSH
- rostlinné proteiny * chemie imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- alergeny MeSH
- peptidy * MeSH
- rostlinné proteiny * MeSH
Lectins are ubiquitous proteins characterized through their ability to bind different types of carbohydrates. It is well known that active lectins from insufficiently prepared legumes can cause adverse human health effects. The objective of this study was to determine the activity of lectins in samples across plant families representing commercially available edible plants, and the feasibility of inactivating lectins through soaking and boiling. Lectins were extracted from the plant families Adoxaceae, Amaranthaceae, Cannabaceae, Fabaceae, Gramineae, Lamiaceae, Linaceae, Pedaliaceae, and Solanaceae. A hemagglutination assay based on non-treated or trypsin treated rabbit erythrocytes was used to measure the lectin activity. The results showed the highest lectin activity in species from the Fabaceae family and demonstrated that soaking and boiling have an effect on the levels of active lectins. This is the first large study that combines lectin activity obtained from two different assays with raw and processed edible plants. In addition, we examined the current risk assessment, and regulations necessary for an adequate official reporting of results. We encourage the scientific community to further explore this field and agree on harmonized methods for analysis and interpretation, and hope that our methodology can initiate this development.
- Klíčová slova
- active lectins, disease, hemagglutination, lectins, legumes, plant-based foods, risk assessment,
- Publikační typ
- časopisecké články MeSH
Breast cancer is the most common malignancy in women worldwide. Over 90% of all breast cancer cases are of different 'sporadic' cell types, thus placing emphasis on the need for breast cancer prevention and new effective treatment strategies. In recent years, pre-clinical research provides growing evidence regarding the beneficial action of bioactive plant-derived substances - phytochemicals, on multiple cancer-related biological pathways. The important natural source of various phytochemicals with anti-oncogenic properties are plant-based functional foods. It is hypothesized that a significant anti-tumour activity of plant-based functional foods are the result of a combination of various phytochemicals rather than an isolated agent. The mixture of phytochemicals with various biological activities present in whole foods could have additive or synergistic effects against carcinogenesis. Clinically, it is very important to compare the effect of the isolated phytochemicals against the mixture of phytochemicals present in specific plant-based functional foods. Therefore, the purpose of this review article is to compare anticancer activities of isolated phytochemicals and plant-based functional foods for the prevention and therapy of breast carcinoma. Our conclusion supports the hypothesis that a mixture of wide range of phytochemicals with a plethora of biological activities present in whole plant-derived foods could have additive or synergistic effects against breast cancer. Although, the lack of parallel comparative studies between whole natural foods versus isolated plant compounds limits our conclusion, future pre-clinical and clinical studies evaluating this issue is required.
- Klíčová slova
- Anti-tumour activity, Breast cancer, Chemoprevention, Isolated compounds, Phytochemicals, Plant-based functional foods, Synergism, Therapy,
- MeSH
- funkční potraviny MeSH
- fytonutrienty farmakologie terapeutické užití MeSH
- lidé MeSH
- nádory prsu farmakoterapie MeSH
- protinádorové látky farmakologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fytonutrienty MeSH
- protinádorové látky MeSH
BACKGROUND: Increased oxidative/dicarbonyl stress and chronic inflammation are considered key pathophysiological mediators in the progression of complications in obesity and type 2 diabetes (T2D). Lifestyle and diet composition have a major impact. In this study, we tested the effects of a vegan (V) and a conventional meat containg (M) meal, matched for energy and macronutrients, on postprandial oxidative and dicarbonyl stress, inflammatory markers and appetite hormones. METHODS: A randomised crossover design was used to evaluate T2D, obese with normal glucose tolerance and control participants (n = 20 in each group), with serum concentrations of analytes determined at 0, 120 and 180 min. Repeated-measures ANOVA was used for statistical analysis. RESULTS: In T2D subjects, we observed decreased postprandial concentrations of oxidised glutathione (p ˂ 0.001) and increased glutathione peroxidase activity (p = 0.045) after the V-meal consumption, compared with the M-meal. In obese participants, V-meal consumption increased postprandial concentrations of reduced glutathione (p = 0.041) and decreased methylglyoxal concentrations (p = 0.023). There were no differences in postprandial secretion of TNFα, MCP-1 or ghrelin in T2D or obese men, but we did observe higher postprandial secretion of leptin after the V-meal in T2D men (p = 0.002) compared with the M-meal. CONCLUSIONS: The results show that a plant-based meal is efficient in ameliorating the postprandial oxidative and dicarbonyl stress compared to a conventional energy- and macronutrient-matched meal, indicating the therapeutic potential of plant-based nutrition in improving the progression of complications in T2D and obese patients. Registered under ClinicalTrials.gov Identifier No. NCT02474147.
- Klíčová slova
- Appetite hormones, Inflammation, Methylglyoxal, Oxidative stress, Plant-based diet, Postprandial state, Type 2 diabetes,
- Publikační typ
- časopisecké články MeSH
The promise of "trait-based" plant ecology is one of generalized prediction across organizational and spatial scales, independent of taxonomy. This promise is a major reason for the increased popularity of this approach. Here, we argue that some important foundational assumptions of trait-based ecology have not received sufficient empirical evaluation. We identify three such assumptions and, where possible, suggest methods of improvement: (i) traits are functional to the degree that they determine individual fitness, (ii) intraspecific variation in functional traits can be largely ignored, and (iii) functional traits show general predictive relationships to measurable environmental gradients.
- Klíčová slova
- Comparative ecology, Environmental gradients, Functional ecology, Intraspecific variation,
- MeSH
- druhová specificita MeSH
- ekologie * MeSH
- fenotyp MeSH
- rostliny * MeSH
- životní prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
An increasing demand for environmentally acceptable alternative for traditional pesticides provides an impetus to conceive new bio-based strategies in crop protection. Employing induced resistance is one such strategy, consisting of boosting the natural plant immunity. Upon infections, plants defend themselves by activating their immune mechanisms. These are initiated after the recognition of an invading pathogen via the microbe-associated molecular patterns (MAMPs) or other microbe-derived molecules. Triggered responses inhibit pathogen spread from the infected site. Systemic signal transport even enables to prepare, i.e. prime, distal uninfected tissues for more rapid and enhanced response upon the consequent pathogen attack. Similar defense mechanisms can be triggered by purified MAMPs, pathogen-derived molecules, signal molecules involved in plant resistance to pathogens, such as salicylic and jasmonic acid, or a wide range of other chemical compounds. Induced resistance can be also conferred by plant-associated microorganisms, including beneficial bacteria or fungi. Treatment with resistance inducers or beneficial microorganisms provides long-lasting resistance for plants to a wide range of pathogens. This study surveys current knowledge on resistance and its mechanisms provided by microbe-, algae- and plant-derived elicitors in different crops. The main scope deals with bacterial substances and fungus-derived molecules chitin and chitosan and algae elicitors, including naturally sulphated polysaccharides such as ulvans, fucans or carageenans. Recent advances in the utilization of this strategy in practical crop protection are also discussed.
- Klíčová slova
- Algae polysaccharides, Biochar, Chitosan, Compost, Elicitor, Induced resistance, Plant extracts,
- MeSH
- dřevěné a živočišné uhlí farmakologie MeSH
- imunita rostlin * účinky léků MeSH
- nemoci rostlin mikrobiologie MeSH
- odolnost vůči nemocem * účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biochar MeSH Prohlížeč
- dřevěné a živočišné uhlí MeSH
As with new technologies, plant nutrition has taken a big step forward in the last two decades. The main objective of this review is to briefly summarise the main pathways in modern plant nutrition and attract potential researchers and publishers to this area. First, this review highlights the importance of long-term field experiments, which provide us with valuable information about the effects of different applied strategies. The second part is dedicated to the new analytical technologies (tomography, spectrometry, and chromatography), intensively studied environments (rhizosphere, soil microbial communities, and enzymatic activity), nutrient relationship indexes, and the general importance of proper data evaluation. The third section is dedicated to the strategies of plant nutrition, i.e., (i) plant breeding, (ii) precision farming, (iii) fertiliser placement, (iv) biostimulants, (v) waste materials as a source of nutrients, and (vi) nanotechnologies. Finally, the increasing environmental risks related to plant nutrition, including biotic and abiotic stress, mainly the threat of soil salinity, are mentioned. In the 21st century, fertiliser application trends should be shifted to local application, precise farming, and nanotechnology; amended with ecofriendly organic fertilisers to ensure sustainable agricultural practices; and supported by new, highly effective crop varieties. To optimise agriculture, only the combination of the mentioned modern strategies supported by a proper analysis based on long-term observations seems to be a suitable pathway.
- Klíčová slova
- long-term field experiments, modern nutrition methods, soil and plant analysis, stressful environment,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Microarrays are one of the new emerging methods in plant virology currently being developed by various laboratories. In this study, a new approach is described on the detection of plant viruses using short synthetic single-stranded oligomers (40 nt) instead of PCR products as capture probes. A microchip detecting potato viruses, PVA, PVS, PVM, PVX, PVY and PLRV, in both single and mixed infections was developed and tested. The chip was also designed to distinguish between the main strains of PVY and PVS. Results of initial tests with PVY(NTN) and PVY(O) strains using several different probes for one virus are presented. Possibilities and advantages of the new oligonucleotide-based microarray approach for plant viral diagnosis are discussed.
- MeSH
- druhová specificita MeSH
- nemoci rostlin virologie MeSH
- oligonukleotidové sondy * MeSH
- oligonukleotidy * chemická syntéza chemie genetika MeSH
- rostlinné viry klasifikace genetika izolace a purifikace MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů metody MeSH
- senzitivita a specificita MeSH
- Solanum tuberosum virologie MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- oligonukleotidové sondy * MeSH
- oligonukleotidy * MeSH
BACKGROUND: Hairy roots constitute a valuable tissue culture system for species that are difficult to propagate through conventional seed-based methods. Moreover, the generation of transgenic plants derived from hairy roots can be facilitated by employing carefully designed hormone-containing media. RESULTS: We initiated hairy root formation in the rare crucifer species Asperuginoides axillaris via an injection-based protocol using the Agrobacterium strain C58C1 harboring a hairy root-inducing (Ri) plasmid and successfully regenerated plants from established hairy root lines. Our study confirms the genetic stability of both hairy roots and their derived regenerants and highlights their utility as a permanent source of mitotic chromosomes for cytogenetic investigations. Additionally, we have developed an effective embryo rescue protocol to circumvent seed dormancy issues in A. axillaris seeds. By using inflorescence primary stems of Arabidopsis thaliana and Cardamine hirsuta as starting material, we also established hairy root lines that were subsequently used for regeneration studies. CONCLUSION: We developed efficient hairy root transformation and regeneration protocols for various crucifers, namely A. axillaris, A. thaliana, and C. hirsuta. Hairy roots and derived regenerants can serve as a continuous source of plant material for molecular and cytogenetic analyses.
- Klíčová slova
- Arabidopsis thaliana, Asperuginoides axillaris, Brassicaceae, Cardamine hirsuta, Crucifers, Cytogenetics, Hairy root, Plant regeneration, Transformation,
- Publikační typ
- časopisecké články MeSH