multiple-input technique
Dotaz
Zobrazit nápovědu
This paper presents new voltage-mode shadow filters employing a low-power multiple-input differential difference transconductance amplifier (MI-DDTA). This device provides multiple-input voltage-mode arithmetic operation capability, electronic tuning ability, high-input and low-output impedances. Therefore, the proposed shadow filters offer circuit simplicity, minimum number of active and passive elements, electronic control of the natural frequency and the quality factor, and high-input and low-output impedances. The proposed MI-DDTA can work with supply voltage of ±0.5 V and consumes 9.94 μW of power. The MI-DDTA and shadow filters have been designed and simulated with the SPICE program using 0.18 μm CMOS process parameters to validate the functionality and workability of the new circuits.
- Klíčová slova
- analog filter, differential difference transconductance amplifier, multiple-input MOS technique, shadow filter,
- Publikační typ
- časopisecké články MeSH
This paper presents a 0.5 V fifth-order Butterworth low-pass filter based on multiple-input operational transconductance amplifiers (OTA). The filter is designed for electrocardiogram (ECG) acquisition systems and operates in the subthreshold region with nano-watt power consumption. The used multiple-input technique simplifies the overall structure of the OTA and reduces the number of active elements needed to realize the filter. The filter was designed and simulated in the Cadence environment using a 0.18 µm Complementary Metal Oxide Semiconductor (CMOS) process from Taiwan Semiconductor Manufacturing Company (TSMC). Simulation results show that the filter has a bandwidth of 250 Hz, a power consumption of 34.65 nW, a dynamic range of 63.24 dB, attaining a figure-of-merit of 0.0191 pJ. The corner (process, voltage, temperature: PVT) and Monte Carlo (MC) analyses are included to prove the robustness of the filter.
- Klíčová slova
- fifth-order low-pass filter, multiple-input bulk-driven technique, nanopower, operational transconductance amplifier, subthreshold region,
- MeSH
- design vybavení MeSH
- elektrokardiografie * MeSH
- lidé MeSH
- polovodiče MeSH
- zesilovače elektronické * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
- Geografické názvy
- Taiwan MeSH
This paper presents a new multiple-input single-output voltage-mode universal filter employing four multiple-input operational transconductance amplifiers (MI-OTAs) and three grounded capacitors suitable for low-voltage low-frequency applications. The quality factor (Q) of the filter functions can be tuned by both the capacitance ratio and the transconductance ratio. The multiple inputs of the OTA are realized using the bulk-driven multiple-input MOS transistor technique. The MI-OTA-based filter can also offer many filtering functions without additional circuitry requirements, such as an inverting amplifier to generate an inverted input signal. The proposed filter can simultaneously realize low-pass, high-pass, band-pass, band-stop, and all-pass responses, covering both non-inverting and inverting transfer functions in a single topology. The natural frequency and the quality factors of all the filtering functions can be controlled independently. The natural frequency can also be electronically controlled by tuning the transconductances of the OTAs. The proposed filter uses a 1 V supply voltage, consumes 120 μW of power for a 5 μA setting current, offers 40 dB of dynamic range and has a third intermodulation distortion of -43.6 dB. The performances of the proposed circuit were simulated using a 0.18 μm TSMC CMOS process in the Cadence Virtuoso System Design Platform to confirm the performance of the topology.
- Klíčová slova
- operational transconductance amplifier, universal filter, voltage-mode circuit,
- Publikační typ
- časopisecké články MeSH
This paper presents a versatile first-order analog filter using differential difference transconductance amplifiers (DDTAs). The DDTA employs the bulk-driven (BD) multiple-input MOS transistors technique (MI-MOST) operating in the subthreshold region. This results in low-voltage and low-power operational capability. Therefore, the DDTA, designed using 130 nm CMOS technology from UMC in the Cadence environment, operates with 0.3 V and consumes 357.4 nW. Unlike previous works, the proposed versatile first-order analog filter provides first-order transfer functions of low-pass, high-pass, and all-pass filters within a single topology. The non-inverting, inverting, and voltage gain of the transfer functions are available for all filters. Furthermore, the proposed structure provides high-input and low-output impedance, which is required for voltage-mode circuits. The pole frequency and voltage gain of the filters can be electronically controlled. The total harmonic distortion of the low-pass filter was calculated as -39.97 dB with an applied sine wave input signal of 50 mVpp@ 50 Hz. The proposed filter has been used to realize a quadrature oscillator to confirm the advantages of the new structure.
- Klíčová slova
- analog filter, differential difference transconductance amplifier, low-voltage low-power circuit, voltage-mode circuit,
- Publikační typ
- časopisecké články MeSH
This paper presents electronically tunable current conveyors using low-voltage, low-power, multiple-input operational transconductance amplifiers (MI-OTAs). The MI-OTA is realized using the multiple-input bulk-driven Metal Oxide Semiconductor transistor (MIBD-MOST) technique to achieve minimum power consumption. The MI-OTA also features high linearity, a wide input range, and a simple Complementary Metal Oxide Semiconductor (CMOS). Thus, high-performance electronically tunable current conveyors are obtained. With the MI-OTA-based current conveyor, both an electronically tunable differential difference current conveyor (EDDCC) and a second-generation electronically tunable current conveyor (ECCII) are available. Unlike the conventional differential difference current conveyor (DDCC) and second-generation current conveyor (CCII), the current gains of the EDDCC and ECCII can be controlled by adjusting the transconductance ratio of the current conveyors. The proposed EDDCC has been used to realize a voltage-to-current converter and current-mode universal filter to show the advantages of the current gain of the EDDCC. The proposed current conveyors and their applications are designed and simulated in the Cadence environment using 0.18 μm TSMC (Taiwan Semiconductor Manufacturing Company) CMOS technology. The proposed circuit uses ±0.5 V of power supply and consumes 90 μW of power. The simulation results are presented and confirm the functionality of the proposed circuit and the filter application. Furthermore, the experimental measurement of the EDDCC implemented in the form of a breadboard connection using a commercially available LM13700 device is presented.
This paper presents a new low-voltage versatile mixed-mode filter which uses a multiple-input/output differential difference transconductance amplifier (MIMO-DDTA). The multiple-input of the DDTA is realized using a multiple-input bulk-driven MOS transistor (MI-BD-MOST) technique to maintain a single differential pair, thereby achieving simple structure with minimal power consumption. In a single topology, the proposed filter can provide five standard filtering functions (low-pass, high-pass, band-pass, band-stop, and all-pass) in four modes: voltage (VM), current (CM), transadmittance (TAM), and transimpedance (TIM). This provides the full capability of a mixed-mode filter (i.e., twenty filter functions). Moreover, the VM filter offers high-input and low-output impedances and the CM filter offers high-output impedance; therefore, no buffer circuit is needed. The natural frequency of all filtering functions can be electronically controlled by a setting current. The voltage supply is 0.5 V and for a 4 nA setting current, the power consumption of the filter was 281 nW. The filter is suitable for low-frequency biomedical and sensor applications that require extremely low supply voltages and nano-watt power consumption. For the VM low-pass filter, the dynamic range was 58.23 dB @ 1% total harmonic distortion. The proposed filter was designed and simulated in the Cadence Virtuoso System Design Platform using the 0.18 µm TSMC CMOS technology.
- Klíčová slova
- differential difference transconductance amplifier, mixed-mode filter, operational transconductance amplifier, universal filter,
- Publikační typ
- časopisecké články MeSH
This paper proposes the simulated and experimental results of a universal filter using the voltage differencing differential difference amplifier (VDDDA). Unlike the previous complementary metal oxide semiconductor (CMOS) structures of VDDDA that is present in the literature, the present one is compact and simple, owing to the employment of the multiple-input metal oxide semiconductor (MOS) transistor technique. The presented filter employs two VDDDAs, one resistor and two grounded capacitors, and it offers low-pass: LP, band-pass: BP, band-reject: BR, high-pass: HP and all-pass: AP responses with a unity passband voltage gain. The proposed universal voltage mode filter has high input impedances and low output impedance. The natural frequency and bandwidth are orthogonally controlled by using separated transconductance without affecting the passband voltage gain. For a BP filter, the root mean square (RMS) of the equivalent output noise is 46 µV, and the third intermodulation distortion (IMD3) is -49.5 dB for an input signal with a peak-to peak of 600 mV, which results in a dynamic range (DR) of 73.2 dB. The filter was designed and simulated in the Cadence environment using a 0.18-µm CMOS process from Taiwan semiconductor manufacturing company (TSMC). In addition, the experimental results were obtained by using the available commercial components LM13700 and AD830. The simulation results are in agreement with the experimental one that confirmed the advantages of the filter.
- Klíčová slova
- VDDDA, biquad filter, multiple-input technique, operational transconductance amplifier,
- Publikační typ
- časopisecké články MeSH
A compact, four-element planar MIMO (Multiple Input, Multiple Output) antenna that operates in an ultra-wideband is presented for diversity application. The orthogonal position of the unit cells replicates the single antenna thrice, thereby decreasing mutual coupling. A UWB MIMO antenna measuring 35 × 35 × 1.6 mm3 is built using a microstrip line (50 Ω impedance) on an FR4 substrate having a thickness of 1.6 mm. The ground plane and radiator of this antenna are adjusted in several ways to bring it within its operating constraints between the frequencies of 3.1 GHz and 10.6 GHz. This technique makes the antenna small and covers the entire ultra-wideband (UWB) frequency range. The NI USRP was used to test the proposed MIMO antenna to determine its real-time performance. Based on the computed results, we conclude that this proposed antenna has outstanding characteristics in terms of performance and is suitable for wireless ultra-wideband indoor communication and diversity utilization with a small size.
- Klíčová slova
- directive gain, envelope correlation coefficient (ECC), monopole, multiple input multiple output (MIMO), ultra-wideband antenna (UWB),
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Myasthenia gravis (MG) is a rare autoimmune disorder. Several new treatment concepts have emerged in recent years, but access to these treatments varies due to differing national reimbursement regulations, leading to disparities across Europe. This highlights the need for high-quality data collection by stakeholders to establish MG registries. A European MG registry could help bridge the treatment access gap across different countries, offering critical data to support regulatory decisions, foster international collaborations, and enhance clinical and epidemiological research. Several national MG registries already exist or are in development. To avoid duplication and ensure harmonization in data collection, a modified Delphi procedure was implemented to identify essential data elements for inclusion in national registries. RESULTS: Following a literature review, consultations with patient associations and pharmaceutical companies, and input from multiple European MG experts, 100 data elements were identified. Of these, 62 reached consensus for inclusion and classification, while only 1 item was agreed for exclusion. 30 items failed to reach the ≥ 80% agreement threshold and were excluded. Among the 62 accepted items, 21 were classified as mandatory data elements, 32 optional, and 9 items pertained to the informed consent form. CONCLUSIONS: Through a modified Delphi procedure, consensus was successfully achieved. This consensus-based approach represents a crucial step toward harmonizing MG registries across Europe. The resulting dataset will facilitate the sharing of knowledge and enhance European collaborations. Furthermore, the harmonized data may assist in regulatory or reimbursement decisions regarding novel therapies, as well as address treatment access disparities between European countries.
- Klíčová slova
- Delphi procedure, European registry, Expert panel, Myasthenia gravis, Rare disease registry,
- MeSH
- delfská metoda MeSH
- konsensus MeSH
- lidé MeSH
- mezinárodní spolupráce MeSH
- myasthenia gravis * epidemiologie terapie MeSH
- registrace * MeSH
- sběr dat MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
This paper introduces a novel technique to evaluate comfort properties of zinc oxide nanoparticles (ZnO NPs) coated woven fabrics. The proposed technique combines artificial neural network (ANN) and golden eagle optimizer (GEO) to ameliorate the training process of ANN. Neural networks are state-of-the-art machine learning models used for optimal state prediction of complex problems. Recent studies showed that the use of metaheuristic algorithms improve the prediction accuracy of ANN. GEO is the most advanced methaheurstic algorithm inspired by golden eagles and their intelligence for hunting by tuning their speed according to spiral trajectory. From application point of view, this study is a very first attempt where GEO is applied along with ANN to improve the training process of ANN for any textiles and composites application. Furthermore, the proposed algorithm ANN with GEO (ANN-GEO) was applied to map out the complex input-output conditions for optimal results. Coated amount of ZnO NPs, fabric mass and fabric thickness were selected as input variables and comfort properties were evaluated as output results. The obtained results reveal that ANN-GEO model provides high performance accuracy than standard ANN model, ANN models trained with latest metaheuristic algorithms including particle swarm optimizer and crow search optimizer, and conventional multiple linear regression.
- MeSH
- Accipitridae * MeSH
- algoritmy MeSH
- neuronové sítě MeSH
- oxid zinečnatý * MeSH
- propylaminy MeSH
- sulfidy MeSH
- textilie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-(4-methylthiophenyl)-2-aminopropane MeSH Prohlížeč
- oxid zinečnatý * MeSH
- propylaminy MeSH
- sulfidy MeSH