The biofilm-positive Staphylococcus epidermidis isolates in raw materials, foodstuffs and on contact surfaces in processing plants
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Biofilms * MeSH
- Food Contamination * MeSH
- Equipment Contamination MeSH
- Food Handling instrumentation MeSH
- Meat Products microbiology MeSH
- Meat microbiology MeSH
- Dairy Products microbiology MeSH
- Milk microbiology MeSH
- Operon MeSH
- Food Microbiology * MeSH
- Electrophoresis, Gel, Pulsed-Field MeSH
- Cattle MeSH
- Staphylococcus epidermidis genetics isolation & purification physiology MeSH
- Virulence MeSH
- Animals MeSH
- Check Tag
- Cattle MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Isolates from the "farm to fork" samples (182 isolates from 2779 samples) were examined genotypically (icaAB genes) and phenotypically (in vitro biofilm formation, typical growth on Congo red agar; CRA) with the aim to assess the risk of penetration of virulent strains of Staphylococcus epidermidis into the food chain. The contamination of meat and milk products was significantly higher in comparison with raw materials. Contamination of contact surfaces in the meat-processing plants was significantly lower than that of contact surfaces in the dairy plants. The ica genes (which precondition the biofilm formation) were concurrently detected in 20 isolates that also showed a typical growth on CRA. Two ica operon-negative isolates produced biofilm in vitro but perhaps by an ica-independent mechanism. The surfaces in the dairy plants and the milk products were more frequently contaminated with ica operon-positive strains (2.3 and 1.2 % samples) than the other sample types (0-0.6 % samples).
See more in PubMed
Folia Microbiol (Praha). 2007;52(4):375-80 PubMed
J Bacteriol. 2005 Apr;187(7):2348-56 PubMed
Mol Microbiol. 2005 Mar;55(6):1883-95 PubMed
J Bacteriol. 2005 Apr;187(7):2426-38 PubMed
J Clin Invest. 2003 Dec;112(11):1620-5 PubMed
J Infect Dis. 2003 Sep 1;188(5):706-18 PubMed
Folia Microbiol (Praha). 2004;49(5):596-600 PubMed
J Dairy Sci. 2001 Sep;84(9):1926-36 PubMed
Vet J. 2006 May;171(3):398-407 PubMed
Epidemiol Infect. 2003 Feb;130(1):33-40 PubMed
Methods Enzymol. 2001;336:239-55 PubMed
Mol Microbiol. 2002 Mar;43(6):1367-78 PubMed
Meat Sci. 2004 Mar;66(3):557-65 PubMed
Lancet Infect Dis. 2002 Nov;2(11):677-85 PubMed
Mol Microbiol. 1996 Jun;20(5):1083-91 PubMed
J Food Prot. 1998 Jan;61(1):57-65 PubMed
Infect Immun. 2001 Jun;69(6):4079-85 PubMed
J Hosp Infect. 2002 Nov;52(3):212-8 PubMed
Infect Immun. 2004 Jul;72(7):3838-48 PubMed
J Bacteriol. 2002 Aug;184(16):4400-8 PubMed
J Clin Microbiol. 1996 Dec;34(12):2888-93 PubMed
Folia Microbiol (Praha). 2006;51(5):381-6 PubMed
Mol Microbiol. 2003 Sep;49(6):1577-93 PubMed
J Clin Microbiol. 2000 Feb;38(2):877-80 PubMed
Carbohydr Res. 2004 Jun 1;339(8):1467-73 PubMed
J Dairy Sci. 1998 Oct;81(10):2765-70 PubMed
J Clin Microbiol. 2001 Jun;39(6):2151-6 PubMed
J Bacteriol. 2001 May;183(9):2888-96 PubMed
Clin Microbiol Rev. 2002 Apr;15(2):167-93 PubMed
Multiresistance of Staphylococcus xylosus and Staphylococcus equorum from Slovak Bryndza cheese