Plants under Stress: Involvement of Auxin and Cytokinin
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28677656
PubMed Central
PMC5535918
DOI
10.3390/ijms18071427
PII: ijms18071427
Knihovny.cz E-zdroje
- Klíčová slova
- ROS, abiotic stress, adaptation, auxin, crosstalk, cytokinin, growth,
- MeSH
- biologický transport MeSH
- cytokininy metabolismus MeSH
- fyziologická adaptace MeSH
- fyziologický stres * MeSH
- fyziologie rostlin * MeSH
- genové regulační sítě MeSH
- kyseliny indoloctové metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostliny genetika metabolismus MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cytokininy MeSH
- kyseliny indoloctové MeSH
- regulátory růstu rostlin MeSH
Plant growth and development are critically influenced by unpredictable abiotic factors. To survive fluctuating changes in their environments, plants have had to develop robust adaptive mechanisms. The dynamic and complementary actions of the auxin and cytokinin pathways regulate a plethora of developmental processes, and their ability to crosstalk makes them ideal candidates for mediating stress-adaptation responses. Other crucial signaling molecules responsible for the tremendous plasticity observed in plant morphology and in response to abiotic stress are reactive oxygen species (ROS). Proper temporal and spatial distribution of ROS and hormone gradients is crucial for plant survival in response to unfavorable environments. In this regard, the convergence of ROS with phytohormone pathways acts as an integrator of external and developmental signals into systemic responses organized to adapt plants to their environments. Auxin and cytokinin signaling pathways have been studied extensively. Nevertheless, we do not yet understand the impact on plant stress tolerance of the sophisticated crosstalk between the two hormones. Here, we review current knowledge on the function of auxin and cytokinin in redirecting growth induced by abiotic stress in order to deduce their potential points of crosstalk.
Zobrazit více v PubMed
Skoog F., Miller C.O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 1957;54:118–130. PubMed
Benjamins R., Scheres B. Auxin: The Looping Star in Plant Development. Annu. Rev. Plant Biol. 2008;59:443–465. doi: 10.1146/annurev.arplant.58.032806.103805. PubMed DOI
Chandler J.W., Werr W. Cytokinin–auxin crosstalk in cell type specification. Trends Plant Sci. 2015;20:291–300. doi: 10.1016/j.tplants.2015.02.003. PubMed DOI
Del Bianco M., Giustini L., Sabatini S. Spatiotemporal changes in the role of cytokinin during root development. New Phytol. 2013;199:324–338. doi: 10.1111/nph.12338. PubMed DOI
Muller D., Leyser O. Auxin, cytokinin and the control of shoot branching. Ann. Bot. 2011;107:1203–1212. doi: 10.1093/aob/mcr069. PubMed DOI PMC
Robert H.S., Crhak Khaitova L., Mroue S., Benková E. The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis. J. Exp. Bot. 2015;66:5029–5042. doi: 10.1093/jxb/erv256. PubMed DOI
Saini S., Sharma I., Kaur N., Pati P.K. Auxin: A master regulator in plant root development. Plant Cell Rep. 2013;32:741–757. doi: 10.1007/s00299-013-1430-5. PubMed DOI
Schaller G.E., Bishopp A., Kieber J.J. The yin-yang of hormones: Cytokinin and auxin interactions in plant development. Plant Cell. 2015;27:44–63. doi: 10.1105/tpc.114.133595. PubMed DOI PMC
Skylar A., Wu X. Regulation of Meristem Size by Cytokinin Signaling. J. Integr. Plant Biol. 2011;53:446–454. doi: 10.1111/j.1744-7909.2011.01045.x. PubMed DOI
Taylor-Teeples M., Lanctot A., Nemhauser J.L. As above, so below: Auxin’s role in lateral organ development. Dev. Biol. 2016;419:156–164. doi: 10.1016/j.ydbio.2016.03.020. PubMed DOI PMC
Werner T., Schmülling T. Cytokinin action in plant development. Curr. Opin. Plant Biol. 2009;12:527–538. doi: 10.1016/j.pbi.2009.07.002. PubMed DOI
Adamowski M., Friml J. PIN-Dependent Auxin Transport: Action, Regulation, and Evolution. Plant Cell. 2015;27:20–32. doi: 10.1105/tpc.114.134874. PubMed DOI PMC
Argueso C.T., Raines T., Kieber J.J. Cytokinin signaling and transcriptional networks. Curr. Opin. Plant Biol. 2010;13:533–539. doi: 10.1016/j.pbi.2010.08.006. PubMed DOI
Bennett T. PIN proteins and the evolution of plant development. Trends Plant Sci. 2015;20:498–507. doi: 10.1016/j.tplants.2015.05.005. PubMed DOI
Hwang I., Sheen J., Müller B. Cytokinin Signaling Networks. Annu. Rev. Plant Biol. 2012;63:353–380. doi: 10.1146/annurev-arplant-042811-105503. PubMed DOI
Kasahara H. Current aspects of auxin biosynthesis in plants. Biosci. Biotechnol. Biochem. 2016;80:34–42. doi: 10.1080/09168451.2015.1086259. PubMed DOI
Pan X., Chen J., Yang Z. Auxin regulation of cell polarity in plants. Curr. Opin. Plant Biol. 2015;28:144–153. doi: 10.1016/j.pbi.2015.10.009. PubMed DOI PMC
Kieber J.J., Schaller G.E. Cytokinins. Arabidopsis Book Am. Soc. Plant Biol. 2014;12:e0168. doi: 10.1199/tab.0168. PubMed DOI PMC
El-Showk S., Ruonala R., Helariutta Y. Crossing paths: Cytokinin signalling and crosstalk. Development. 2013;140:1373–1383. doi: 10.1242/dev.086371. PubMed DOI
Sehra B., Franks R.G. Auxin and cytokinin act during gynoecial patterning and the development of ovules from the meristematic medial domain. Wiley Interdiscip. Rev. Dev. Biol. 2015;4:555–571. doi: 10.1002/wdev.193. PubMed DOI
Su Y.-H., Liu Y.-B., Zhang X.-S. Auxin-cytokinin interaction regulates meristem development. Mol. Plant. 2011;4:616–625. doi: 10.1093/mp/ssr007. PubMed DOI PMC
Vanstraelen M., Benková E. Hormonal Interactions in the Regulation of Plant Development. Annu. Rev. Cell Dev. Biol. 2012;28:463–487. doi: 10.1146/annurev-cellbio-101011-155741. PubMed DOI
Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Gollery M., Shulaev V., Van Breusegem F. ROS signaling: The new wave? Trends Plant Sci. 2011;16:300–309. doi: 10.1016/j.tplants.2011.03.007. PubMed DOI
Tognetti V.B., Mühlenbock P., Van Breusegem F. Stress homeostasis—The redox and auxin perspective. Plant Cell Environ. 2012;35:321–333. doi: 10.1111/j.1365-3040.2011.02324.x. PubMed DOI
Kazan K. Auxin and the integration of environmental signals into plant root development. Ann. Bot. 2013;112:1655–1665. doi: 10.1093/aob/mct229. PubMed DOI PMC
Krishnamurthy A., Rathinasabapathi B. Auxin and its transport play a role in plant tolerance to arsenite-induced oxidative stress in Arabidopsis thaliana. Plant Cell Environ. 2013;36:1838–1849. doi: 10.1111/pce.12093. PubMed DOI
O’Brien J.A., Benkova E. Cytokinin cross-talking during biotic and abiotic stress responses. Front. Plant Sci. 2013;4:451. doi: 10.3389/fpls.2013.00451. PubMed DOI PMC
Xia X.-J., Zhou Y.-H., Shi K., Zhou J., Foyer C.H., Yu J.-Q. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J. Exp. Bot. 2015;66:2839–2856. doi: 10.1093/jxb/erv089. PubMed DOI
Zwack P.J., Rashotte A.M. Interactions between cytokinin signalling and abiotic stress responses. J. Exp. Bot. 2015;66:4863–4871. doi: 10.1093/jxb/erv172. PubMed DOI
Verma V., Ravindran P., Kumar P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16:86. doi: 10.1186/s12870-016-0771-y. PubMed DOI PMC
Cerny M., Kuklova A., Hoehenwarter W., Fragner L., Novak O., Rotkova G., Jedelsky P.L., Zakova K., Smehilova M., Strnad M., et al. Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation. J. Exp. Bot. 2013;64:4193–4206. doi: 10.1093/jxb/ert227. PubMed DOI PMC
Ljung K., Bhalerao R.P., Sandberg G. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J. 2001;28:465–474. doi: 10.1046/j.1365-313X.2001.01173.x. PubMed DOI
Mühlenbock P., Szechyńska-Hebda M., Płaszczyca M., Baudo M., Mateo A., Mullineaux P.M., Parker J.E., Karpińska B., Karpiński S. Chloroplast Signaling and LESION SIMULATING DISEASE1 Regulate Crosstalk between Light Acclimation and Immunity in Arabidopsis. Plant Cell Online. 2008;20:2339–2356. doi: 10.1105/tpc.108.059618. PubMed DOI PMC
Kim J.I., Baek D., Park H.C., Chun H.J., Oh D.-H., Lee M.K., Cha J.-Y., Kim W.-Y., Kim M.C., Chung W.S., et al. Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficit. Mol. Plant. 2013;6:337–349. doi: 10.1093/mp/sss100. PubMed DOI
Lee M., Jung J.-H., Han D.-Y., Seo P.J., Park W.J., Park C.-M. Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta. 2012;235:923–938. doi: 10.1007/s00425-011-1552-3. PubMed DOI
Park H.C., Cha J.-Y., Yun D.-J. Roles of YUCCAs in auxin biosynthesis and drought stress responses in plants. Plant Signal. Behav. 2013;8:e24495. doi: 10.4161/psb.24495. PubMed DOI PMC
Cheng Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 2006;20:1790–1799. doi: 10.1101/gad.1415106. PubMed DOI PMC
Sakata T., Oshino T., Miura S., Tomabechi M., Tsunaga Y., Higashitani N., Miyazawa Y., Takahashi H., Watanabe M., Higashitani A. Auxins reverse plant male sterility caused by high temperatures. Proc. Natl. Acad. Sci. USA. 2010;107:8569–8574. doi: 10.1073/pnas.1000869107. PubMed DOI PMC
Cha J.-Y., Kim W.-Y., Kang S.B., Kim J.I., Baek D., Jung I.J., Kim M.R., Li N., Kim H.-J., Nakajima M., et al. A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis. Nat. Commun. 2015;6:8041. doi: 10.1038/ncomms9041. PubMed DOI PMC
Ke Q., Wang Z., Ji C.Y., Jeong J.C., Lee H.-S., Li H., Xu B., Deng X., Kwak S.-S. Transgenic poplar expressing Arabidopsis YUCCA6 exhibits auxin-overproduction phenotypes and increased tolerance to abiotic stress. Plant Physiol. Biochem. 2015;94:19–27. doi: 10.1016/j.plaphy.2015.05.003. PubMed DOI
Shi H., Chen L., Ye T., Liu X., Ding K., Chan Z. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol. Biochem. 2014;82:209–217. doi: 10.1016/j.plaphy.2014.06.008. PubMed DOI
Woo Y.-M., Park H.-J., Su’udi M., Yang J.-I., Park J.-J., Back K., Park Y.-M., An G. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol. Biol. 2007;65:125–136. doi: 10.1007/s11103-007-9203-6. PubMed DOI
Werner T., Nehnevajova E., Kollmer I., Novak O., Strnad M., Kramer U., Schmulling T. Root-Specific Reduction of Cytokinin Causes Enhanced Root Growth, Drought Tolerance, and Leaf Mineral Enrichment in Arabidopsis and Tobacco. Plant Cell. 2010;22:3905–3920. doi: 10.1105/tpc.109.072694. PubMed DOI PMC
Mok D.W., Mok M.C. Cytokinin Metabolism and Action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001;52:89–118. doi: 10.1146/annurev.arplant.52.1.89. PubMed DOI
Sakakibara H. Cytokinins: Activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 2006;57:431–449. doi: 10.1146/annurev.arplant.57.032905.105231. PubMed DOI
Frebort I., Kowalska M., Hluska T., Frebortova J., Galuszka P. Evolution of cytokinin biosynthesis and degradation. J. Exp. Bot. 2011;62:2431–2452. doi: 10.1093/jxb/err004. PubMed DOI
Hare P.D., Cress W.A., van Staden J. The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul. 1997;23:79–103. doi: 10.1023/A:1005954525087. DOI
Argueso C.T., Ferreira F.J., Kieber J.J. Environmental perception avenues: The interaction of cytokinin and environmental response pathways. Plant Cell Environ. 2009;32:1147–1160. doi: 10.1111/j.1365-3040.2009.01940.x. PubMed DOI
Bano A., Hansen H., Dörffling K., Hahn H. Changes in the contents of free and conjugated abscisic acid, phaseic acid and cytokinins in xylem sap of drought stressed sunflower plants. Phytochemistry. 1994;37:345–347. doi: 10.1016/0031-9422(94)85058-5. DOI
Shashidhar V.R., Prasad T.G., Sudharshan L. Hormone signals from roots to shoots of sunflower (Helianthus annuus L.). Moderate soil drying increases delivery of abscisic acid and depresses delivery of cytokinins in xylem sap. Ann. Bot. 1996;78:151–155. doi: 10.1006/anbo.1996.0107. DOI
Alvarez S., Marsh E.L., Schroeder S.G., Schachtman D.P. Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ. 2008;31:325–340. doi: 10.1111/j.1365-3040.2007.01770.x. PubMed DOI
Davies W.J., Kudoyarova G., Hartung W. Long-distance ABA Signaling and Its Relation to Other Signaling Pathways in the Detection of Soil Drying and the Mediation of the Plant’s Response to Drought. J. Plant Growth Regul. 2005;24:285–295. doi: 10.1007/s00344-005-0103-1. DOI
Hansen H., Dörffling K. Root-derived trans-zeatin riboside and abscisic acid in drought-stressed and rewatered sunflower plants: Interaction in the control of leaf diffusive resistance? Funct. Plant Biol. 2003;30:365–375. doi: 10.1071/FP02223. PubMed DOI
McDAVID C.R., Sagar G.R., Marshall C. The Effect of Root Pruning and 6-Benzyl-Aminopurine on the Chlorophyll Content, 14CO2 Fixation and the Shoot/Root Ratio in Seedlings of Pisvm Sativum L. New Phytol. 1973;72:465–470. doi: 10.1111/j.1469-8137.1973.tb04395.x. DOI
Thomas J.C., McElwain E.F., Bohnert H.J. Convergent Induction of Osmotic Stress-Responses 1. Plant Physiol. 1992;100:416–423. doi: 10.1104/pp.100.1.416. PubMed DOI PMC
Lubovská Z., Dobrá J., Štorchová H., Wilhelmová N., Vanková R. Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defense against heat, drought and their combination in Nicotiana tabacum plants. J. Plant Physiol. 2014;171:1625–1633. doi: 10.1016/j.jplph.2014.06.021. PubMed DOI
Mackova H., Hronkova M., Dobra J., Tureckova V., Novak O., Lubovska Z., Motyka V., Haisel D., Hajek T., Prasil I.T., et al. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J. Exp. Bot. 2013;64:2805–2815. doi: 10.1093/jxb/ert131. PubMed DOI PMC
Nishiyama R., Watanabe Y., Fujita Y., Le D.T., Kojima M., Werner T., Vankova R., Yamaguchi-Shinozaki K., Shinozaki K., Kakimoto T., et al. Analysis of Cytokinin Mutants and Regulation of Cytokinin Metabolic Genes Reveals Important Regulatory Roles of Cytokinins in Drought, Salt and Abscisic Acid Responses, and Abscisic Acid Biosynthesis. Plant Cell. 2011;23:2169–2183. doi: 10.1105/tpc.111.087395. PubMed DOI PMC
Pospíšilová H., Jiskrová E., Vojta P., Mrízová K., Kokáš F., Čudejková M.M., Bergougnoux V., Plíhal O., Klimešová J., Novák O., et al. Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. New Biotechnol. 2016;33:692–705. doi: 10.1016/j.nbt.2015.12.005. PubMed DOI
Vojta P., Kokáš F., Husičková A., Grúz J., Bergougnoux V., Marchetti C.F., Jiskrová E., Ježilová E., Mik V., Ikeda Y., et al. Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress. New Biotechnol. 2016;33:676–691. doi: 10.1016/j.nbt.2016.01.010. PubMed DOI
Werner T., Motyka V., Laucou V., Smets R., Van Onckelen H., Schmulling T. Cytokinin-Deficient Transgenic Arabidopsis Plants Show Multiple Developmental Alterations Indicating Opposite Functions of Cytokinins in the Regulation of Shoot and Root Meristem Activity. Plant Cell. 2003;15:2532–2550. doi: 10.1105/tpc.014928. PubMed DOI PMC
Rivero R.M., Gimeno J., Deynze A.V., Walia H., Blumwald E. Enhanced Cytokinin Synthesis in Tobacco Plants Expressing PSARK::IPT Prevents the Degradation of Photosynthetic Protein Complexes During Drought. Plant Cell Physiol. 2010;51:1929–1941. doi: 10.1093/pcp/pcq143. PubMed DOI
Peleg Z., Reguera M., Tumimbang E., Walia H., Blumwald E. Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol. J. 2011;9:747–758. doi: 10.1111/j.1467-7652.2010.00584.x. PubMed DOI
Qin H., Gu Q., Zhang J., Sun L., Kuppu S., Zhang Y., Burow M., Payton P., Blumwald E., Zhang H. Regulated Expression of an Isopentenyltransferase Gene (IPT) in Peanut Significantly Improves Drought Tolerance and Increases Yield Under Field Conditions. Plant Cell Physiol. 2011;52:1904–1914. doi: 10.1093/pcp/pcr125. PubMed DOI
Kuppu S., Mishra N., Hu R., Sun L., Zhu X., Shen G., Blumwald E., Payton P., Zhang H. Water-Deficit Inducible Expression of a Cytokinin Biosynthetic Gene IPT Improves Drought Tolerance in Cotton. PLoS ONE. 2013;8:e64190. doi: 10.1371/journal.pone.0064190. PubMed DOI PMC
Décima Oneto C., Otegui M.E., Baroli I., Beznec A., Faccio P., Bossio E., Blumwald E., Lewi D. Water deficit stress tolerance in maize conferred by expression of an isopentenyltransferase (IPT) gene driven by a stress- and maturation-induced promoter. J. Biotechnol. 2016;220:66–77. doi: 10.1016/j.jbiotec.2016.01.014. PubMed DOI
Rivero R. M., Kojima M., Gepstein A., Sakakibara H., Mittler R., Gepstein S., Blumwald E. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl. Acad. Sci. USA. 2007;104:19631–19636. doi: 10.1073/pnas.0709453104. PubMed DOI PMC
Merewitz E.B., Gianfagna T., Huang B. Photosynthesis, water use, and root viability under water stress as affected by expression of SAG12-ipt controlling cytokinin synthesis in Agrostis stolonifera. J. Exp. Bot. 2011;62:383–395. doi: 10.1093/jxb/erq285. PubMed DOI PMC
Xu Y., Burgess P., Zhang X., Huang B. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera. J. Exp. Bot. 2016;67:1979–1992. doi: 10.1093/jxb/erw019. PubMed DOI PMC
Wang Y., Shen W., Chan Z., Wu Y. Endogenous Cytokinin Overproduction Modulates ROS Homeostasis and Decreases Salt Stress Resistance in Arabidopsis Thaliana. Front. Plant Sci. 2015;6:1004. doi: 10.3389/fpls.2015.01004. PubMed DOI PMC
Žižková E., Dobrev P.I., Muhovski Y., Hošek P., Hoyerová K., Haisel D., Procházková D., Lutts S., Motyka V., Hichri I. Tomato (Solanum lycopersicum L.) SlIPT3 and SlIPT4 isopentenyltransferases mediate salt stress response in tomato. BMC Plant Biol. 2015 doi: 10.1186/s12870-015-0415-7. PubMed DOI PMC
Tognetti V.B., Van Aken O., Morreel K., Vandenbroucke K., van de Cotte B., De Clercq I., Chiwocha S., Fenske R., Prinsen E., Boerjan W., et al. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell. 2010;22:2660–2679. doi: 10.1105/tpc.109.071316. PubMed DOI PMC
Maruyama K., Urano K., Yoshiwara K., Morishita Y., Sakurai N., Suzuki H., Kojima M., Sakakibara H., Shibata D., Saito K., et al. Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol. 2014;164:1759–1771. doi: 10.1104/pp.113.231720. PubMed DOI PMC
Tripathi A.K., Pareek A., Sopory S.K., Singla-Pareek S.L. Narrowing down the targets for yield improvement in rice under normal and abiotic stress conditions via expression profiling of yield-related genes. Rice N. Y. 2012;5:37. doi: 10.1186/1939-8433-5-37. PubMed DOI PMC
Wu C., Cui K., Wang W., Li Q., Fahad S., Hu Q., Huang J., Nie L., Mohapatra P.K., Peng S. Heat-Induced Cytokinin Transportation and Degradation Are Associated with Reduced Panicle Cytokinin Expression and Fewer Spikelets per Panicle in Rice. Front. Plant Sci. 2017;8:371. doi: 10.3389/fpls.2017.00371. PubMed DOI PMC
Joshi R., Sahoo K.K., Tripathi A.K., Kumar R., Gupta B.K., Pareek A., Singla-Pareek S.L. TKnockdown of an inflorescence meristem-specific cytokinin oxidase—OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant Cell Environ. 2017 doi: 10.1111/pce.12947. PubMed DOI
Chang Z., Liu Y., Dong H., Teng K., Han L., Zhang X. Effects of Cytokinin and Nitrogen on Drought Tolerance of Creeping Bentgrass. PLoS ONE. 2016;11:e0154005. doi: 10.1371/journal.pone.0154005. PubMed DOI PMC
Liu X., Huang B. Cytokinin Effects on Creeping Bentgrass Response to Heat Stress. Crop Sci. 2002;42:466–472. doi: 10.2135/cropsci2002.0466. DOI
Mýtinová Z., Motyka V., Haisel D., Gaudinová A., Lubovská Z., Wilhelmová N. Effect of abiotic stresses on the activity of antioxidative enzymes and contents of phytohormones in wild type and AtCKX2 transgenic tobacco plants. Biol. Plant. 2010;54:461–470. doi: 10.1007/s10535-010-0082-3. DOI
Skalák J., Černý M., Jedelský P., Dobrá J., Ge E., Novák J., Hronková M., Dobrev P., Vanková R., Brzobohatý B. Stimulation of ipt overexpression as a tool to elucidate the role of cytokinins in high temperature responses of Arabidopsis thaliana. J. Exp. Bot. 2016;67:2861–2873. doi: 10.1093/jxb/erw129. PubMed DOI PMC
Zavaleta-Mancera H.A., López-Delgado H., Loza-Tavera H., Mora-Herrera M., Trevilla-García C., Vargas-Suárez M., Ougham H. Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. J. Plant Physiol. 2007;164:1572–1582. doi: 10.1016/j.jplph.2007.02.003. PubMed DOI
Kawano T. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep. 2003;21:829–837. PubMed
Jansen M.A.K., van den Noort R.E., Tan M.Y.A., Prinsen E., Lagrimini L.M., Thorneley R.N.F. Phenol-Oxidizing Peroxidases Contribute to the Protection of Plants from Ultraviolet Radiation Stress. Plant Physiol. 2001;126:1012–1023. doi: 10.1104/pp.126.3.1012. PubMed DOI PMC
Vatulescu A.D., Fortunato A.S., Sá M.C., Amâncio S., Ricardo C.P.P., Jackson P.A. Cloning and characterisation of a basic IAA oxidase associated with root induction in Vitis vinifera. Plant Physiol. Biochem. 2004;42:609–615. doi: 10.1016/j.plaphy.2004.06.009. PubMed DOI
Cosio C., Vuillemin L., Meyer M.D., Kevers C., Penel C., Dunand C. An anionic class III peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase activity. Planta. 2009;229:823–836. doi: 10.1007/s00425-008-0876-0. PubMed DOI
Potters G., Pasternak T.P., Guisez Y., Jansen M.A.K. Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ. 2009;32:158–169. doi: 10.1111/j.1365-3040.2008.01908.x. PubMed DOI
Vanderauwera S., Zimmermann P., Rombauts S., Vandenabeele S., Langebartels C., Gruissem W., Inze D., Van Breusegem F. Genome-Wide Analysis of Hydrogen Peroxide-Regulated Gene Expression in Arabidopsis Reveals a High Light-Induced Transcriptional Cluster Involved in Anthocyanin Biosynthesis. Plant Physiol. 2005;139:806–821. doi: 10.1104/pp.105.065896. PubMed DOI PMC
Ahrazem O., Rubio-Moraga A., Trapero-Mozos A., Climent M.F.L., Gómez-Cadenas A., Gómez-Gómez L. Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation. Plant Sci. 2015;234:60–73. doi: 10.1016/j.plantsci.2015.02.004. PubMed DOI
Ludwig-Müller J. Auxin conjugates: Their role for plant development and in the evolution of land plants. J. Exp. Bot. 2011;62:1757–1773. doi: 10.1093/jxb/erq412. PubMed DOI
Du H., Wu N., Fu J., Wang S., Li X., Xiao J., Xiong L. A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J. Exp. Bot. 2012;63:6467–6480. doi: 10.1093/jxb/ers300. PubMed DOI PMC
Park J.-E., Park J.-Y., Kim Y.-S., Staswick P.E., Jeon J., Yun J., Kim S.-Y., Kim J., Lee Y.-H., Park C.-M. GH3-mediated Auxin Homeostasis Links Growth Regulation with Stress Adaptation Response in Arabidopsis. J. Biol. Chem. 2007;282:10036–10046. doi: 10.1074/jbc.M610524200. PubMed DOI
Teichmann T., Bolu-Arianto W.H., Olbrich A., Langenfeld-Heyser R., Göbel C., Grzeganek P., Feussner I., Hänsch R., Polle A. GH3::GUS reflects cell-specific developmental patterns and stress-induced changes in wood anatomy in the poplar stem. Tree Physiol. 2008;28:1305–1315. doi: 10.1093/treephys/28.9.1305. PubMed DOI
Zhang S.-W., Li C.-H., Cao J., Zhang Y.-C., Zhang S.-Q., Xia Y.-F., Sun D.-Y., Sun Y. Altered Architecture and Enhanced Drought Tolerance in Rice via the Down-Regulation of Indole-3-Acetic Acid by TLD1/OsGH3.13 Activation. Plant Physiol. 2009;151:1889–1901. doi: 10.1104/pp.109.146803. PubMed DOI PMC
Junghans U., Polle A., Düchting P., Weiler E., Kuhlman B., Gruber F., Teichmann T. Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ. 2006;29:1519–1531. doi: 10.1111/j.1365-3040.2006.01529.x. PubMed DOI
Singh V.K., Jain M., Garg R. Genome-wide analysis and expression profiling suggest diverse roles of GH3 genes during development and abiotic stress responses in legumes. Front. Plant Sci. 2015 doi: 10.3389/fpls.2014.00789. PubMed DOI PMC
Feng S., Yue R., Tao S., Yang Y., Zhang L., Xu M., Wang H., Shen C. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses. J. Integr. Plant Biol. 2015;57:783–795. doi: 10.1111/jipb.12327. PubMed DOI
Kinoshita N., Wang H., Kasahara H., Liu J., MacPherson C., Machida Y., Kamiya Y., Hannah M.A., Chua N.-H. IAA-Ala Resistant3, an Evolutionarily Conserved Target of miR167, Mediates Arabidopsis Root Architecture Changes during High Osmotic Stress. Plant Cell. 2012;24:3590–3602. doi: 10.1105/tpc.112.097006. PubMed DOI PMC
Ostrowski M., Ciarkowska A., Jakubowska A. The auxin conjugate indole-3-acetyl-aspartate affects responses to cadmium and salt stress in Pisum sativum L. J. Plant Physiol. 2016;191:63–72. doi: 10.1016/j.jplph.2015.11.012. PubMed DOI
Li Y., Wang B., Dong R., Hou B. AtUGT76C2, an Arabidopsis cytokinin glycosyltransferase is involved in drought stress adaptation. Plant Sci. 2015;236:157–167. doi: 10.1016/j.plantsci.2015.04.002. PubMed DOI
Gidrol X., Lin W.S., Dégousée N., Yip S.F., Kush A. Accumulation of Reactive Oxygen Species and Oxidation of Cytokinin in Germinating Soybean Seeds. Eur. J. Biochem. 1994;224:21–28. doi: 10.1111/j.1432-1033.1994.tb19990.x. PubMed DOI
Peer W.A., Cheng Y., Murphy A.S. Evidence of oxidative attenuation of auxin signalling. J. Exp. Bot. 2013;64:2629–2639. doi: 10.1093/jxb/ert152. PubMed DOI
Peer W.A., Murphy A.S. Flavonoids and auxin transport: Modulators or regulators? Trends Plant Sci. 2007;12:556–563. doi: 10.1016/j.tplants.2007.10.003. PubMed DOI
Santelia D., Henrichs S., Vincenzetti V., Sauer M., Bigler L., Klein M., Bailly A., Lee Y., Friml J., Geisler M., et al. Flavonoids Redirect PIN-mediated Polar Auxin Fluxes during Root Gravitropic Responses. J. Biol. Chem. 2008;283:31218–31226. doi: 10.1074/jbc.M710122200. PubMed DOI PMC
Kuhn B.M., Geisler M., Bigler L., Ringli C. Flavonols Accumulate Asymmetrically and Affect Auxin Transport in Arabidopsis. Plant Physiol. 2011;156:585–595. doi: 10.1104/pp.111.175976. PubMed DOI PMC
Agati G., Brunetti C., Di Ferdinando M., Ferrini F., Pollastri S., Tattini M. Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiol. Biochem. 2013;72:35–45. doi: 10.1016/j.plaphy.2013.03.014. PubMed DOI
Brown D.E., Rashotte A.M., Murphy A.S., Normanly J., Tague B.W., Peer W.A., Taiz L., Muday G.K. Flavonoids act as negative regulators of auxin transport in vivo in arabidopsis. Plant Physiol. 2001;126:524–535. doi: 10.1104/pp.126.2.524. PubMed DOI PMC
Buer C.S., Muday G.K. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell. 2004;16:1191–1205. doi: 10.1105/tpc.020313. PubMed DOI PMC
Peer W.A., Bandyopadhyay A., Blakeslee J.J., Makam S.N., Chen R.J., Masson P.H., Murphy A.S. Variation in Expression and Protein Localization of the PIN Family of Auxin Efflux Facilitator Proteins in Flavonoid Mutants with Altered Auxin Transport in Arabidopsis thaliana. Plant Cell. 2004;16:1898–1911. doi: 10.1105/tpc.021501. PubMed DOI PMC
Kuhn B.M., Nodzyński T., Errafi S., Bucher R., Gupta S., Aryal B., Dobrev P., Bigler L., Geisler M., Zažímalová E., et al. Flavonol-induced changes in PIN2 polarity and auxin transport in the Arabidopsis thaliana rol1-2 mutant require phosphatase activity. Sci. Rep. 2017 doi: 10.1038/srep41906. PubMed DOI PMC
Buer C.S., Kordbacheh F., Truong T.T., Hocart C.H., Djordjevic M.A. Alteration of flavonoid accumulation patterns in transparent testa mutants disturbs auxin transport, gravity responses, and imparts long-term effects on root and shoot architecture. Planta. 2013;238:171–189. doi: 10.1007/s00425-013-1883-3. PubMed DOI
Rushton P.J., Somssich I.E., Ringler P., Shen Q.J. WRKY transcription factors. Trends Plant Sci. 2010;15:247–258. doi: 10.1016/j.tplants.2010.02.006. PubMed DOI
Grunewald W., De Smet I., Lewis D.R., Löfke C., Jansen L., Goeminne G., Vanden Bossche R., Karimi M., De Rybel B., Vanholme B., et al. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc. Natl. Acad. Sci. USA. 2012;109:1554–1559. doi: 10.1073/pnas.1121134109. PubMed DOI PMC
Smith A.P., Nourizadeh S.D., Peer W.A., Xu J., Bandyopadhyay A., Murphy A.S., Goldsbrough P.B. Arabidopsis AtGSTF2 is regulated by ethylene and auxin, and encodes a glutathione S-transferase that interacts with flavonoids. Plant J. 2003;36:433–442. doi: 10.1046/j.1365-313X.2003.01890.x. PubMed DOI
Kokubo T., Ambe-Ono Y., Nakamura M., Ishida H., Yamakawa T., Kodama T. Promotive effect of auxins on UDP-glucose: Flavonol glucosyltransferase activity in Vitis sp. cell cultures. J. Biosci. Bioeng. 2001;91:564–569. doi: 10.1016/S1389-1723(01)80174-2. PubMed DOI
Silva-Navas J., Moreno-Risueno M.A., Manzano C., Téllez-Robledo B., Navarro-Neila S., Carrasco V., Pollmann S., Gallego F.J., del Pozo J.C. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition. Plant Cell. 2016;28:1372–1387. doi: 10.1105/tpc.15.00857. PubMed DOI PMC
Pasternak T., Rudas V., Potters G., Jansen M.A.K. Morphogenic effects of abiotic stress: Reorientation of growth in Arabidopsis thaliana seedlings. Environ. Exp. Bot. 2005;53:299–314. doi: 10.1016/j.envexpbot.2004.04.009. DOI
Jiang Y., Deyholos M.K. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol. 2006;6:25. doi: 10.1186/1471-2229-6-25. PubMed DOI PMC
Liu W., Li R.-J., Han T.-T., Cai W., Fu Z.-W., Lu Y.-T. Salt Stress Reduces Root Meristem Size by Nitric Oxide-Mediated Modulation of Auxin Accumulation and Signaling in Arabidopsis. Plant Physiol. 2015;168:343–356. doi: 10.1104/pp.15.00030. PubMed DOI PMC
Sun F., Zhang W., Hu H., Li B., Wang Y., Zhao Y., Li K., Liu M., Li X. Salt Modulates Gravity Signaling Pathway to Regulate Growth Direction of Primary Roots in Arabidopsis. Plant Physiol. 2008;146:178–188. doi: 10.1104/pp.107.109413. PubMed DOI PMC
Yue R., Tie S., Sun T., Zhang L., Yang Y., Qi J., Yan S., Han X., Wang H., Shen C. Genome-Wide Identification and Expression Profiling Analysis of ZmPIN, ZmPILS, ZmLAX and ZmABCB Auxin Transporter Gene Families in Maize (Zea mays L.) under Various Abiotic Stresses. PLoS ONE. 2015;10:e0118751. doi: 10.1371/journal.pone.0118751. PubMed DOI PMC
Geldner N., Anders N., Wolters H., Keicher J., Kornberger W., Muller P., Delbarre A., Ueda T., Nakano A., Jürgens G. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell. 2003;112:219–230. doi: 10.1016/S0092-8674(03)00003-5. PubMed DOI
Kleine-Vehn J., Łangowski Ł., Wiśniewska J., Dhonukshe P., Brewer P.B., Friml J. Cellular and Molecular Requirements for Polar PIN Targeting and Transcytosis in Plants. Mol. Plant. 2008;1:1056–1066. doi: 10.1093/mp/ssn062. PubMed DOI
Benková E., Michniewicz M., Sauer M., Teichmann T., Seifertová D., Jürgens G., Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell. 2003;115:591–602. doi: 10.1016/S0092-8674(03)00924-3. PubMed DOI
Friml J., Wiśniewska J., Benková E., Mendgen K., Palme K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature. 2002;415:806–809. doi: 10.1038/415806a. PubMed DOI
Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa R., Jürgens G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 2003;426:147–153. doi: 10.1038/nature02085. PubMed DOI
Reinhardt D., Pesce E.-R., Stieger P., Mandel T., Baltensperger K., Bennett M., Traas J., Friml J., Kuhlemeier C. Regulation of phyllotaxis by polar auxin transport. Nature. 2003;426:255–260. doi: 10.1038/nature02081. PubMed DOI
Heisler M.G., Ohno C., Das P., Sieber P., Reddy G.V., Long J.A., Meyerowitz E.M. Patterns of Auxin Transport and Gene Expression during Primordium Development Revealed by Live Imaging of the Arabidopsis Inflorescence Meristem. Curr. Biol. 2005;15:1899–1911. doi: 10.1016/j.cub.2005.09.052. PubMed DOI
Shibasaki K., Uemura M., Tsurumi S., Rahman A. Auxin Response in Arabidopsis under Cold Stress: Underlying Molecular Mechanisms. Plant Cell. 2009;21:3823–3838. doi: 10.1105/tpc.109.069906. PubMed DOI PMC
Zwiewka M., Nodzyński T., Robert S., Vanneste S., Friml J. Osmotic Stress Modulates the Balance between Exocytosis and Clathrin-Mediated Endocytosis in Arabidopsis thaliana. Mol. Plant. 2015;8:1175–1187. doi: 10.1016/j.molp.2015.03.007. PubMed DOI
Galvan-Ampudia C.S., Julkowska M.M., Darwish E., Gandullo J., Korver R.A., Brunoud G., Haring M.A., Munnik T., Vernoux T., Testerink C. Halotropism Is a Response of Plant Roots to Avoid a Saline Environment. Curr. Biol. 2013;23:2044–2050. doi: 10.1016/j.cub.2013.08.042. PubMed DOI
Bishopp A., Help H., El-Showk S., Weijers D., Scheres B., Friml J., Benková E., Mähönen A.P., Helariutta Y. A Mutually Inhibitory Interaction between Auxin and Cytokinin Specifies Vascular Pattern in Roots. Curr. Biol. 2011;21:917–926. doi: 10.1016/j.cub.2011.04.017. PubMed DOI
Gillissen B., Bürkle L., André B., Kühn C., Rentsch D., Brandl B., Frommer W.B. A New Family of High-Affinity Transporters for Adenine, Cytosine, and Purine Derivatives in Arabidopsis. Plant Cell. 2000;12:291–300. doi: 10.1105/tpc.12.2.291. PubMed DOI PMC
Kudo T., Kiba T., Sakakibara H. Metabolism and Long-distance Translocation of Cytokinins. J. Integr. Plant Biol. 2010;52:53–60. doi: 10.1111/j.1744-7909.2010.00898.x. PubMed DOI
Bürkle L., Cedzich A., Döpke C., Stransky H., Okumoto S., Gillissen B., Kühn C., Frommer W.B. Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant J. 2003;34:13–26. doi: 10.1046/j.1365-313X.2003.01700.x. PubMed DOI
Hirose N., Takei K., Kuroha T., Kamada-Nobusada T., Hayashi H., Sakakibara H. Regulation of cytokinin biosynthesis, compartmentalization and translocation. J. Exp. Bot. 2007;59:75–83. doi: 10.1093/jxb/erm157. PubMed DOI
Bishopp A., Lehesranta S., Vatén A., Help H., El-Showk S., Scheres B., Helariutta K., Mähönen A.P., Sakakibara H., Helariutta Y. Phloem-Transported Cytokinin Regulates Polar Auxin Transport and Maintains Vascular Pattern in the Root Meristem. Curr. Biol. 2011;21:927–932. doi: 10.1016/j.cub.2011.04.049. PubMed DOI
Ko D., Kang J., Kiba T., Park J., Kojima M., Do J., Kim K.Y., Kwon M., Endler A., Song W.-Y., et al. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc. Natl. Acad. Sci. USA. 2014;111:7150–7155. doi: 10.1073/pnas.1321519111. PubMed DOI PMC
Zhang K., Novak O., Wei Z., Gou M., Zhang X., Yu Y., Yang H., Cai Y., Strnad M., Liu C.-J. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat. Commun. 2014;5:3274. doi: 10.1038/ncomms4274. PubMed DOI
Ulmasov T., Murfett J., Hagen G., Guilfoyle T.J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell Online. 1997;9:1963–1971. doi: 10.1105/tpc.9.11.1963. PubMed DOI PMC
Shu W., Liu Y., Guo Y., Zhou H., Zhang J., Zhao S., Lu M. A Populus TIR1 gene family survey reveals differential expression patterns and responses to 1-naphthaleneacetic acid and stress treatments. Front. Plant Sci. 2015;6:719. PubMed PMC
Blomster T., Salojarvi J., Sipari N., Brosche M., Ahlfors R., Keinanen M., Overmyer K., Kangasjarvi J. Apoplastic Reactive Oxygen Species Transiently Decrease Auxin Signaling and Cause Stress-Induced Morphogenic Response in Arabidopsis. Plant Physiol. 2011;157:1866–1883. doi: 10.1104/pp.111.181883. PubMed DOI PMC
Farcot E., Lavedrine C., Vernoux T. A modular analysis of the auxin signalling network. PLoS ONE. 2015;10:e0122231. doi: 10.1371/journal.pone.0122231. PubMed DOI PMC
Iglesias M.J., Terrile M.C., Bartoli C.G., D’Ippólito S., Casalongué C.A. Auxin signaling participates in the adaptative response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant Mol. Biol. 2010;74:215–222. doi: 10.1007/s11103-010-9667-7. PubMed DOI
Ha C.V., Le D.T., Nishiyama R., Watanabe Y., Sulieman S., Tran U.T., Mochida K., Dong N.V., Yamaguchi-Shinozaki K., Shinozaki K., et al. The auxin response factor transcription factor family in soybean: Genome-wide identification and expression analyses during development and water stress. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes. 2013;20:511–524. PubMed PMC
Jain M., Khurana J.P. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J. 2009;276:3148–3162. doi: 10.1111/j.1742-4658.2009.07033.x. PubMed DOI
Wang S., Bai Y., Shen C., Wu Y., Zhang S., Jiang D., Guilfoyle T.J., Chen M., Qi Y. Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct. Integr. Genom. 2010;10:533–546. doi: 10.1007/s10142-010-0174-3. PubMed DOI
Jung H., Lee D.-K., Choi Y.D., Kim J.-K. OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. Plant Sci. 2015;236:304–312. doi: 10.1016/j.plantsci.2015.04.018. PubMed DOI
Matsui A., Ishida J., Morosawa T., Mochizuki Y., Kaminuma E., Endo T.A., Okamoto M., Nambara E., Nakajima M., Kawashima M., et al. Arabidopsis Transcriptome Analysis under Drought, Cold, High-Salinity and ABA Treatment Conditions using a Tiling Array. Plant Cell Physiol. 2008;49:1135–1149. doi: 10.1093/pcp/pcn101. PubMed DOI
Sun X., Xu L., Wang Y., Yu R., Zhu X., Luo X., Gong Y., Wang R., Limera C., Zhang K., et al. Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.) BMC Genom. 2015;16:197. doi: 10.1186/s12864-015-1416-5. PubMed DOI PMC
Liu H.-H., Tian X., Li Y.-J., Wu C.-A., Zheng C.-C. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA. 2008;14:836–843. doi: 10.1261/rna.895308. PubMed DOI PMC
Zürcher E., Müller B. Cytokinin Synthesis, Signaling, and Function—Advances and New Insights. Int. Rev. Cell Mol. Biol. 2016;324:1–38. PubMed
Argyros R.D., Mathews D.E., Chiang Y.-H., Palmer C.M., Thibault D.M., Etheridge N., Argyros D.A., Mason M.G., Kieber J.J., Schaller G.E. Type B Response Regulators of Arabidopsis Play Key Roles in Cytokinin Signaling and Plant Development. Plant Cell Online. 2008;20:2102–2116. doi: 10.1105/tpc.108.059584. PubMed DOI PMC
Sakai H., Aoyama T., Bono H., Oka A. Two-Component Response Regulators from Arabidopsis thaliana Contain a Putative DNA-Binding Motif. Plant Cell Physiol. 1998;39:1232–1239. doi: 10.1093/oxfordjournals.pcp.a029325. PubMed DOI
Sakai H., Aoyama T., Oka A. Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J. Cell Mol. Biol. 2000;24:703–711. doi: 10.1046/j.1365-313x.2000.00909.x. PubMed DOI
Sakai H., Honma T., Aoyama T., Sato S., Kato T., Tabata S., Oka A. ARR1, a transcription factor for genes immediately responsive to cytokinins. Science. 2001;294:1519–1521. doi: 10.1126/science.1065201. PubMed DOI
Brandstatter I., Kieber J.J. Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell. 1998;10:1009–1019. doi: 10.1105/tpc.10.6.1009. PubMed DOI PMC
D’Agostino I.B., Deruère J., Kieber J.J. Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol. 2000;124:1706–1717. doi: 10.1104/pp.124.4.1706. PubMed DOI PMC
Hwang I., Sheen J. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature. 2001;413:383–389. doi: 10.1038/35096500. PubMed DOI
Tran L.-S.P., Urao T., Qin F., Maruyama K., Kakimoto T., Shinozaki K., Yamaguchi-Shinozaki K. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2007;104:20623–20628. doi: 10.1073/pnas.0706547105. PubMed DOI PMC
Kumar M.N., Verslues P.E. Stress physiology functions of the Arabidopsis histidine kinase cytokinin receptors. Physiol. Plant. 2015;154:369–380. doi: 10.1111/ppl.12290. PubMed DOI
Jeon J., Kim N.Y., Kim S., Kang N.Y., Novak O., Ku S.-J., Cho C., Lee D.J., Lee E.-J., Strnad M., et al. A Subset of Cytokinin Two-component Signaling System Plays a Role in Cold Temperature Stress Response in Arabidopsis. J. Biol. Chem. 2010;285:23371–23386. doi: 10.1074/jbc.M109.096644. PubMed DOI PMC
Jeon J., Kim J. Arabidopsis Response Regulator1 and Arabidopsis Histidine Phosphotransfer Protein2 (AHP2), AHP3, and AHP5 Function in Cold Signaling. Plant Physiol. 2013;161:408–424. doi: 10.1104/pp.112.207621. PubMed DOI PMC
Kang N.Y., Cho C., Kim J. Inducible Expression of Arabidopsis Response Regulator 22 (ARR22), a Type-C ARR, in Transgenic Arabidopsis Enhances Drought and Freezing Tolerance. PLoS ONE. 2013 doi: 10.1371/journal.pone.0079248. PubMed DOI PMC
Bhargava A., Clabaugh I., To J.P., Maxwell B.B., Chiang Y.-H., Schaller G.E., Loraine A., Kieber J.J. Identification of Cytokinin-Responsive Genes Using Microarray Meta-Analysis and RNA-Seq in Arabidopsis. Plant Physiol. 2013;162:272–294. doi: 10.1104/pp.113.217026. PubMed DOI PMC
Brenner W.G., Schmulling T. Transcript profiling of cytokinin action in Arabidopsis roots and shoots discovers largely similar but also organ-specific responses. BMC Plant Biol. 2012;12:112. doi: 10.1186/1471-2229-12-112. PubMed DOI PMC
Kocsy G., Tari I., Vanková R., Zechmann B., Gulyás Z., Poór P., Galiba G. Redox control of plant growth and development. Plant Sci. 2013;211:77–91. doi: 10.1016/j.plantsci.2013.07.004. PubMed DOI
Reguera M., Peleg Z., Abdel-Tawab Y.M., Tumimbang E.B., Delatorre C.A., Blumwald E. Stress-Induced Cytokinin Synthesis Increases Drought Tolerance through the Coordinated Regulation of Carbon and Nitrogen Assimilation in Rice. Plant Physiol. 2013;163:1609–1622. doi: 10.1104/pp.113.227702. PubMed DOI PMC
Kang N.Y., Cho C., Kim N.Y., Kim J. Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of Arabidopsis thaliana. J. Plant Physiol. 2012;169:1382–1391. doi: 10.1016/j.jplph.2012.05.007. PubMed DOI
Dello Ioio R., Linhares F.S., Scacchi E., Casamitjana-Martinez E., Heidstra R., Costantino P., Sabatini S. Cytokinins Determine Arabidopsis Root-Meristem Size by Controlling Cell Differentiation. Curr. Biol. 2007;17:678–682. doi: 10.1016/j.cub.2007.02.047. PubMed DOI
Nishiyama R., Watanabe Y., Leyva-Gonzalez M.A., Van Ha C., Fujita Y., Tanaka M., Seki M., Yamaguchi-Shinozaki K., Shinozaki K., Herrera-Estrella L., et al. Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc. Natl. Acad. Sci. USA. 2013;110:4840–4845. doi: 10.1073/pnas.1302265110. PubMed DOI PMC
Sun L., Zhang Q., Wu J., Zhang L., Jiao X., Zhang S., Zhang Z., Sun D., Lu T., Sun Y. Two Rice Authentic Histidine Phosphotransfer Proteins, OsAHP1 and OsAHP2, Mediate Cytokinin Signaling and Stress Responses in Rice. Plant Physiol. 2014;165:335–345. doi: 10.1104/pp.113.232629. PubMed DOI PMC
Mason M.G., Jha D., Salt D.E., Tester M., Hill K., Kieber J.J., Eric Schaller G. Type-B response regulators ARR1 and ARR12 regulate expression of AtHKT1;1 and accumulation of sodium in Arabidopsis shoots. Plant J. 2010;64:753–763. doi: 10.1111/j.1365-313X.2010.04366.x. PubMed DOI
Rashotte A.M., Mason M.G., Hutchison C.E., Ferreira F.J., Schaller G.E., Kieber J.J. A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc. Natl. Acad. Sci. USA. 2006;103:11081–11085. doi: 10.1073/pnas.0602038103. PubMed DOI PMC
Shi X., Gupta S., Rashotte A.M. Characterization of two tomato AP2/ERF genes, SlCRF1 and SlCRF2 in hormone and stress responses. Plant Cell Rep. 2014;33:35–45. doi: 10.1007/s00299-013-1510-6. PubMed DOI
Inzé A., Vanderauwera S., Hoeberichts F.A., Vandorpe M., van Gaever T., Van Breusegem F. A subcellular localization compendium of hydrogen peroxide-induced proteins. Plant Cell Environ. 2012;35:308–320. doi: 10.1111/j.1365-3040.2011.02323.x. PubMed DOI
Zwack P.J., Robinson B.R., Risley M.G., Rashotte A.M. Cytokinin Response Factor 6 Negatively Regulates Leaf Senescence and is Induced in Response to Cytokinin and Numerous Abiotic Stresses. Plant Cell Physiol. 2013;54:971–981. doi: 10.1093/pcp/pct049. PubMed DOI
Zwack P.J., De Clercq I., Howton T.C., Hallmark H.T., Hurny A., Keshishian E.A., Parish A.M., Benkova E., Mukhtar M.S., Van Breusegem F., et al. Cytokinin Response Factor 6 Represses Cytokinin-Associated Genes during Oxidative Stress. Plant Physiol. 2016;172:1249–1258. doi: 10.1104/pp.16.00415. PubMed DOI PMC
Gupta S., Rashotte A.M. Expression patterns and regulation of SlCRF3 and SlCRF5 in response to cytokinin and abiotic stresses in tomato (Solanum lycopersicum) J. Plant Physiol. 2014;171:349–358. doi: 10.1016/j.jplph.2013.09.003. PubMed DOI
De Clercq I., Vermeirssen V., van Aken O., Vandepoele K., Murcha M.W., Law S.R., Inzé A., Ng S., Ivanova A., Rombaut D., et al. The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell. 2013;25:3472–3490. doi: 10.1105/tpc.113.117168. PubMed DOI PMC
Ng S., Ivanova A., Duncan O., Law S.R., Van Aken O., de Clercq I., Wang Y., Carrie C., Xu L., Kmiec B., et al. A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis. Plant Cell. 2013;25:3450–3471. doi: 10.1105/tpc.113.113985. PubMed DOI PMC
Zwack P.J., Compton M.A., Adams C.I., Rashotte A.M. Cytokinin response factor 4 (CRF4) is induced by cold and involved in freezing tolerance. Plant Cell Rep. 2015:1–12. doi: 10.1007/s00299-015-1904-8. PubMed DOI
Feng J., Wang C., Chen Q., Chen H., Ren B., Li X., Zuo J. S-nitrosylation of phosphotransfer proteins represses cytokinin signaling. Nat. Commun. 2013;4:1529. doi: 10.1038/ncomms2541. PubMed DOI
Terrile M.C., París R., Calderón-Villalobos L.I.A., Iglesias M.J., Lamattina L., Estelle M., Casalongué C.A. Nitric Oxide Influences Auxin Signaling through S-nitrosylation of the Arabidopsis Transport Inhibitor Response1 Auxin Receptor. Plant J. 2012;70:492–500. doi: 10.1111/j.1365-313X.2011.04885.x. PubMed DOI PMC
Jones B., Ljung K. Auxin and cytokinin regulate each other’s levels via a metabolic feedback loop. Plant Signal. Behav. 2011;6:901–904. doi: 10.4161/psb.6.6.15323. PubMed DOI PMC
Birnbaum K.D. How many ways are there to make a root? Curr. Opin. Plant Biol. 2016;34:61–67. doi: 10.1016/j.pbi.2016.10.001. PubMed DOI
De Rybel B., Mähönen A.P., Helariutta Y., Weijers D. Plant vascular development: From early specification to differentiation. Nat. Rev. Mol. Cell Biol. 2016;17:30–40. doi: 10.1038/nrm.2015.6. PubMed DOI
Naseem M., Kaltdorf M., Dandekar T. The nexus between growth and defence signalling: Auxin and cytokinin modulate plant immune response pathways. J. Exp. Bot. 2015;66:4885–4896. doi: 10.1093/jxb/erv297. PubMed DOI
Miyawaki K., Matsumoto-Kitano M., Kakimoto T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: Tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. Cell Mol. Biol. 2004;37:128–138. doi: 10.1046/j.1365-313X.2003.01945.x. PubMed DOI
Dello Ioio R., Nakamura K., Moubayidin L., Perilli S., Taniguchi M., Morita M.T., Aoyama T., Costantino P., Sabatini S. A genetic framework for the control of cell division and differentiation in the root meristem. Science. 2008;322:1380–1384. doi: 10.1126/science.1164147. PubMed DOI
Tanaka M., Takei K., Kojima M., Sakakibara H., Mori H. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J. 2006;45:1028–1036. doi: 10.1111/j.1365-313X.2006.02656.x. PubMed DOI
Nordström A., Tarkowski P., Tarkowska D., Norbaek R., Astot C., Dolezal K., Sandberg G. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. Proc. Natl. Acad. Sci. USA. 2004;101:8039–8044. doi: 10.1073/pnas.0402504101. PubMed DOI PMC
Werner T., Köllmer I., Bartrina I., Holst K., Schmülling T. New Insights into the Biology of Cytokinin Degradation. Plant Biol. 2006;8:371–381. doi: 10.1055/s-2006-923928. PubMed DOI
Carabelli M., Possenti M., Sessa G., Ciolfi A., Sassi M., Morelli G., Ruberti I. Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity. Genes Dev. 2007;21:1863–1868. doi: 10.1101/gad.432607. PubMed DOI PMC
Jones B., Gunnerås S.A., Petersson S.V., Tarkowski P., Graham N., May S., Dolezal K., Sandberg G., Ljung K. Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell. 2010;22:2956–2969. doi: 10.1105/tpc.110.074856. PubMed DOI PMC
Polanská L., Vicánková A., Nováková M., Malbeck J., Dobrev P.I., Brzobohaty B., Vanková R., Machácková I. Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco. J. Exp. Bot. 2007;58:637–649. doi: 10.1093/jxb/erl235. PubMed DOI
Müller B., Sheen J. Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature. 2008;453:1094–1097. doi: 10.1038/nature06943. PubMed DOI PMC
Zhao Z., Andersen S.U., Ljung K., Dolezal K., Miotk A., Schultheiss S.J., Lohmann J.U. Hormonal control of the shoot stem-cell niche. Nature. 2010;465:1089–1092. doi: 10.1038/nature09126. PubMed DOI
Moubayidin L., Perilli S., Dello Ioio R., Di Mambro R., Costantino P., Sabatini S. The rate of cell differentiation controls the Arabidopsis root meristem growth phase. Curr. Biol. 2010;20:1138–1143. doi: 10.1016/j.cub.2010.05.035. PubMed DOI
Pernisová M., Klíma P., Horák J., Válková M., Malbeck J., Souček P., Reichman P., Hoyerová K., Dubová J., Friml J., et al. Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc. Natl. Acad. Sci. USA. 2009;106:3609–3614. doi: 10.1073/pnas.0811539106. PubMed DOI PMC
Marhavý P., Bielach A., Abas L., Abuzeineh A., Duclercq J., Tanaka H., Pařezová M., Petrášek J., Friml J., Kleine-Vehn J., et al. Cytokinin Modulates Endocytic Trafficking of PIN1 Auxin Efflux Carrier to Control Plant Organogenesis. Dev. Cell. 2011;21:796–804. doi: 10.1016/j.devcel.2011.08.014. PubMed DOI
Rŭžička K., Šimášková M., Duclercq J., Petrášek J., Zažímalová E., Simon S., Friml J., Van Montagu M.C., Benková E. Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc. Natl. Acad. Sci. USA. 2009;106:4284–4289. doi: 10.1073/pnas.0900060106. PubMed DOI PMC
Moreira S., Bishopp A., Carvalho H., Campilho A. AHP6 Inhibits Cytokinin Signaling to Regulate the Orientation of Pericycle Cell Division during Lateral Root Initiation. PLoS ONE. 2013 doi: 10.1371/journal.pone.0056370. PubMed DOI PMC
Kuppusamy K.T., Walcher C.L., Nemhauser J.L. Cross-regulatory mechanisms in hormone signaling. Plant Mol. Biol. 2009;69:375–381. doi: 10.1007/s11103-008-9389-2. PubMed DOI
Ramireddy E., Chang L., Schmülling T. Cytokinin as a mediator for regulating root system architecture in response to environmental cues. Plant Signal. Behav. 2014 doi: 10.4161/psb.27771. PubMed DOI PMC
Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., Widmayer P., Gruissem W., Zimmermann P. Genevestigator V3: A Reference Expression Database for the Meta-Analysis of Transcriptomes. Adv. Bioinform. 2008;2008:e420747. doi: 10.1155/2008/420747. PubMed DOI PMC
Bennett T., Hines G., van Rongen M., Waldie T., Sawchuk M.G., Scarpella E., Ljung K., Leyser O. Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices. PLoS Biol. 2016;14:e1002446. doi: 10.1371/journal.pbio.1002446. PubMed DOI PMC
Bainbridge K., Guyomarc’h S., Bayer E., Swarup R., Bennett M., Mandel T., Kuhlemeier C. Auxin influx carriers stabilize phyllotactic patterning. Genes Dev. 2008;22:810–823. doi: 10.1101/gad.462608. PubMed DOI PMC
Revalska M., Vassileva V., Zechirov G., Iantcheva A. Is the auxin influx carrier LAX3 essential for plant growth and development in the model plants Medicago truncatula, Lotus japonicus and Arabidopsis thaliana? Biotechnol. Biotechnol. Equip. 2015;29:786–797. doi: 10.1080/13102818.2015.1031698. DOI
Wolters H., Anders N., Geldner N., Gavidia R., Jürgens G. Coordination of apical and basal embryo development revealed by tissue-specific GNOM functions. Development. 2011;138:117–126. doi: 10.1242/dev.059147. PubMed DOI
Ren H., Gray W.M. SAUR Proteins as Effectors of Hormonal and Environmental Signals in Plant Growth. Mol. Plant. 2015;8:1153. doi: 10.1016/j.molp.2015.05.003. PubMed DOI PMC
Chae K., Isaacs C.G., Reeves P.H., Maloney G.S., Muday G.K., Nagpal P., Reed J.W. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. Plant J. 2012;71:684–697. doi: 10.1111/j.1365-313X.2012.05024.x. PubMed DOI
Spartz A.K., Ren H., Park M.Y., Grandt K.N., Lee S.H., Murphy A.S., Sussman M.R., Overvoorde P.J., Gray W.M. SAUR Inhibition of PP2C-D Phosphatases Activates Plasma Membrane H+-ATPases to Promote Cell Expansion in Arabidopsis. Plant Cell. 2014;26:2129–2142. doi: 10.1105/tpc.114.126037. PubMed DOI PMC
Chen D., Richardson T., Chai S., McIntyre C.L., Rae A.L., Xue G.-P. Drought-Up-Regulated TaNAC69-1 is a Transcriptional Repressor of TaSHY2 and TaIAA7, and Enhances Root Length and Biomass in Wheat. Plant Cell Physiol. 2016;57:2076–2090. doi: 10.1093/pcp/pcw126. PubMed DOI
Fan M., Bai M.-Y., Kim J.-G., Wang T., Oh E., Chen L., Park C.H., Son S.-H., Kim S.-K., Mudgett M.B., et al. The bHLH transcription factor HBI1 mediates the trade-off between growth and pathogen-associated molecular pattern-triggered immunity in Arabidopsis. Plant Cell. 2014;26:828–841. doi: 10.1105/tpc.113.121111. PubMed DOI PMC
Benekos K., Kissoudis C., Nianiou-Obeidat I., Labrou N., Madesis P., Kalamaki M., Makris A., Tsaftaris A. Overexpression of a specific soybean GmGSTU4 isoenzyme improves diphenyl ether and chloroacetanilide herbicide tolerance of transgenic tobacco plants. J. Biotechnol. 2010;150:195–201. doi: 10.1016/j.jbiotec.2010.07.011. PubMed DOI
Jha Y., Subramanian R.B., Patel S. Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol. Plant. 2011;33:797–802. doi: 10.1007/s11738-010-0604-9. DOI
Roxas V.P., Smith R.K., Allen E.R., Allen R.D. Overexpression of glutathione S-transferase/glutathioneperoxidase enhances the growth of transgenic tobacco seedlings during stress. Nat. Biotechnol. 1997;15:988–991. doi: 10.1038/nbt1097-988. PubMed DOI
Sharma R., Sahoo A., Devendran R., Jain M. Over-Expression of a Rice Tau Class Glutathione S-Transferase Gene Improves Tolerance to Salinity and Oxidative Stresses in Arabidopsis. PLoS ONE. 2014 doi: 10.1371/journal.pone.0092900. PubMed DOI PMC
Tiwari V., Patel M.K., Chaturvedi A.K., Mishra A., Jha B. Functional Characterization of the Tau Class Glutathione-S-Transferases Gene (SbGSTU) Promoter of Salicornia brachiata under Salinity and Osmotic Stress. PLoS ONE. 2016 doi: 10.1371/journal.pone.0148494. PubMed DOI PMC
Diaz-Vivancos P., de Simone A., Kiddle G., Foyer C.H. Glutathione—Linking cell proliferation to oxidative stress. Free Radic. Biol. Med. 2015;89:1154–1164. doi: 10.1016/j.freeradbiomed.2015.09.023. PubMed DOI
Foyer C.H., Noctor G. Ascorbate and Glutathione: The Heart of the Redox Hub. Plant Physiol. 2011;155:2–18. doi: 10.1104/pp.110.167569. PubMed DOI PMC
Noctor G., Mhamdi A., Chaouch S., Han Y., Neukermans J., Marquez-Garcia B., Queval G., Foyer C.H. Glutathione in plants: An integrated overview. Plant Cell Environ. 2012;35:454–484. doi: 10.1111/j.1365-3040.2011.02400.x. PubMed DOI
Passaia G., Queval G., Bai J., Margis-Pinheiro M., Foyer C.H. The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana. J. Exp. Bot. 2014;65:1403–1413. doi: 10.1093/jxb/ert486. PubMed DOI PMC
Remy E., Cabrito T.R., Baster P., Batista R.A., Teixeira M.C., Friml J., Sa-Correia I., Duque P. A Major Facilitator Superfamily Transporter Plays a Dual Role in Polar Auxin Transport and Drought Stress Tolerance in Arabidopsis. Plant Cell. 2013;25:901–926. doi: 10.1105/tpc.113.110353. PubMed DOI PMC
Kamimoto Y., Terasaka K., Hamamoto M., Takanashi K., Fukuda S., Shitan N., Sugiyama A., Suzuki H., Shibata D., Wang B., et al. Arabidopsis ABCB21 is a Facultative Auxin Importer/Exporter Regulated by Cytoplasmic Auxin Concentration. Plant Cell Physiol. 2012;53:2090–2100. doi: 10.1093/pcp/pcs149. PubMed DOI
Terasaka K., Blakeslee J.J., Titapiwatanakun B., Peer W.A., Bandyopadhyay A., Makam S.N., Lee O.R., Richards E.L., Murphy A.S., Sato F., et al. PGP4, an ATP Binding Cassette P-Glycoprotein, Catalyzes Auxin Transport in Arabidopsis thaliana Roots. Plant Cell. 2005;17:2922–2939. doi: 10.1105/tpc.105.035816. PubMed DOI PMC
Barbez E., Kubeš M., Rolčík J., Béziat C., Pěnčík A., Wang B., Rosquete M.R., Zhu J., Dobrev P.I., Lee Y., et al. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature. 2012;485:119–122. doi: 10.1038/nature11001. PubMed DOI
Sugawara S., Hishiyama S., Jikumaru Y., Hanada A., Nishimura T., Koshiba T., Zhao Y., Kamiya Y., Kasahara H. Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2009;106:5430–5435. doi: 10.1073/pnas.0811226106. PubMed DOI PMC
Zhao Y. Auxin Biosynthesis. Arabidopsis Book Am. Soc. Plant Biol. 2014 doi: 10.1199/tab.0173. PubMed DOI PMC
Mellor N., Band L.R., Pěnčík A., Novák O., Rashed A., Holman T., Wilson M.H., Voß U., Bishopp A., King J.R., et al. Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proc. Natl. Acad. Sci. USA. 2016;113:11022–11027. doi: 10.1073/pnas.1604458113. PubMed DOI PMC
Bou-Torrent J., Salla-Martret M., Brandt R., Musielak T., Palauqui J.-C., Martínez-García J.F., Wenkel S. ATHB4 and HAT3, two class II HD-ZIP transcription factors, control leaf development in Arabidopsis. Plant Signal. Behav. 2012;7:1382–1387. doi: 10.4161/psb.21824. PubMed DOI PMC
Hu Y., Xie Q., Chua N.-H. The Arabidopsis Auxin-Inducible Gene ARGOS Controls Lateral Organ Size. Plant Cell. 2003;15:1951. doi: 10.1105/tpc.013557. PubMed DOI PMC
Shi J., Habben J.E., Archibald R.L., Drummond B.J., Chamberlin M.A., Williams R.W., Lafitte H.R., Weers B.P. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize. Plant Physiol. 2015;169:266–282. doi: 10.1104/pp.15.00780. PubMed DOI PMC
Rawat R., Schwartz J., Jones M.A., Sairanen I., Cheng Y., Andersson C.R., Zhao Y., Ljung K., Harmer S.L. REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc. Natl. Acad. Sci. USA. 2009;106:16883–16888. doi: 10.1073/pnas.0813035106. PubMed DOI PMC
Kim H.J., Chiang Y.-H., Kieber J.J., Schaller G.E. SCFKMD controls cytokinin signaling by regulating the degradation of type-B response regulators. Proc. Natl. Acad. Sci. USA. 2013;110:10028. doi: 10.1073/pnas.1300403110. PubMed DOI PMC
Zhang X., Gou M., Guo C., Yang H., Liu C.-J. Down-Regulation of Kelch Domain-Containing F-Box Protein in Arabidopsis Enhances the Production of (Poly) phenols and Tolerance to Ultraviolet Radiation. Plant Physiol. 2015;167:337. doi: 10.1104/pp.114.249136. PubMed DOI PMC
Lessons Learned from the Studies of Roots Shaded from Direct Root Illumination
ER-Localized PIN Carriers: Regulators of Intracellular Auxin Homeostasis