Synthesis and Spectrum of Biological Activities of Novel N-arylcinnamamides
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
30087309
PubMed Central
PMC6121455
DOI
10.3390/ijms19082318
PII: ijms19082318
Knihovny.cz E-resources
- Keywords
- MTT assay, PET inhibition, antifungal activity, antistaphylococcal activity, antitubercular activity, biofilm, cinnamamides, structure–activity relationship, time-kill assay, toxicity,
- MeSH
- Anti-Bacterial Agents chemical synthesis chemistry pharmacology MeSH
- Antifungal Agents chemical synthesis chemistry pharmacology MeSH
- Antitubercular Agents chemical synthesis chemistry pharmacology MeSH
- Biofilms drug effects MeSH
- Cinnamates chemical synthesis chemistry pharmacology MeSH
- Fusarium drug effects MeSH
- Humans MeSH
- Methicillin-Resistant Staphylococcus aureus drug effects physiology MeSH
- Microbial Sensitivity Tests MeSH
- Mycobacterium tuberculosis drug effects physiology MeSH
- Plant Diseases microbiology MeSH
- Plants microbiology MeSH
- Staphylococcal Infections drug therapy MeSH
- Staphylococcus aureus drug effects physiology MeSH
- Chemistry Techniques, Synthetic MeSH
- Tuberculosis drug therapy MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Antifungal Agents MeSH
- Antitubercular Agents MeSH
- cinnamamide MeSH Browser
- Cinnamates MeSH
: A series of sixteen ring-substituted N-arylcinnamamides was prepared and characterized. Primary in vitro screening of all the synthesized compounds was performed against Staphylococcus aureus, three methicillin-resistant S. aureus strains, Mycobacterium tuberculosis H37Ra, Fusarium avenaceum, and Bipolaris sorokiniana. Several of the tested compounds showed antistaphylococcal, antitubercular, and antifungal activities comparable with or higher than those of ampicillin, isoniazid, and benomyl. (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-phenylprop-2-enamide and (2E)-3-phenyl-N-[3-(trifluoromethyl)phenyl]prop-2-enamide showed the highest activities (MICs = 22.27 and 27.47 µM, respectively) against all four staphylococcal strains and against M.tuberculosis. These compounds showed an activity against biofilm formation of S.aureus ATCC 29213 in concentrations close to MICs and an ability to increase the activity of clinically used antibiotics with different mechanisms of action (vancomycin, ciprofloxacin, and tetracycline). In time-kill studies, a decrease of CFU/mL of >99% after 8 h from the beginning of incubation was observed. (2E)-N-(3,5-Dichlorophenyl)- and (2E)-N-(3,4-dichlorophenyl)-3-phenylprop-2-enamide had a MIC = 27.38 µM against M. tuberculosis, while a significant decrease (22.65%) of mycobacterial cell metabolism determined by the MTT assay was observed for the 3,5-dichlorophenyl derivative. (2E)-N-(3-Fluorophenyl)- and (2E)-N-(3-methylphenyl)-3-phenylprop-2-enamide exhibited MICs = 16.58 and 33.71 µM, respectively, against B. sorokiniana. The screening of the cytotoxicity of the most effective antimicrobial compounds was performed using THP-1 cells, and these chosen compounds did not shown any significant lethal effect. The compounds were also evaluated for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. (2E)-N-(3,5-dichlorophenyl)-3-phenylprop-2-enamide (IC50 = 5.1 µM) was the most active PET inhibitor. Compounds with fungicide potency did not show any in vivo toxicity against Nicotiana tabacum var. Samsun. The structure⁻activity relationships are discussed.
See more in PubMed
Lichtenthaler H.K., Schweiger J. Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants. J. Plant Physiol. 1998;152:272–282. doi: 10.1016/S0176-1617(98)80142-9. DOI
Vogt T. Phenylpropanoid biosynthesis. Mol. Plant. 2010;3:2–20. doi: 10.1093/mp/ssp106. PubMed DOI
Adisakwattana S., Chantarasinlapin P., Thammarat H., Yibchok-Anun S. A series of cinnamic acid derivatives and their inhibitory activity on intestinal alpha-glucosidase. J. Enzyme Inhib. Med. Chem. 2009;24:1194–1200. doi: 10.1080/14756360902779326. PubMed DOI
Berrin O., Murat K., Ilkay O. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol. 2011;49:396–402. PubMed
Sharma P. Cinnamic acid derivatives: A new chapter of various pharmacological activities. J. Chem. Pharm. Res. 2011;3:403–423.
Sova M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem. 2012;12:749–767. doi: 10.2174/138955712801264792. PubMed DOI
Korosec B., Sova M., Turk S., Krasevec N., Novak M., Lah L., Stojan J., Podobnik B., Berne S., Zupanec N., et al. Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53) J. Appl. Microbiol. 2014;116:955–966. doi: 10.1111/jam.12417. PubMed DOI
Guzman J.D. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules. 2014;19:19292–19349. doi: 10.3390/molecules191219292. PubMed DOI PMC
Peperidou A., Kapoukranidou D., Kontogiorgis C., Hadjipavlou-Litina D. Multitarget molecular hybrids of cinnamic acids. Molecules. 2014;19:20197–20226. doi: 10.3390/molecules191220197. PubMed DOI PMC
Pontiki E., Hadjipavlou-Litina D., Litinas K., Geromichalos G. Novel cinnamic acid derivatives as antioxidant and anticancer agents: Design, synthesis and modeling studies. Molecules. 2014;19:9655–9674. doi: 10.3390/molecules19079655. PubMed DOI PMC
Hadjipavlou-Litina D., Pontiki E. Aryl-acetic and cinnamic acids as lipoxygenase inhibitors with antioxidant, anti-inflammatory, and anticancer activity. Methods Mol. Biol. 2015;1208:361–377. PubMed
Su P., Shi Y., Wang J., Shen X., Zhang J. Anticancer agents derived from natural cinnamic acids. Anticancer Agents Med. Chem. 2015;15:980–987. doi: 10.2174/1871520615666150130111120. PubMed DOI
De Vita D., Simonetti G., Pandolfi F., Costi R., Di Santo R., D’Auria F.D., Scipione L. Exploring the anti-biofilm activity of cinnamic acid derivatives in Candida albicans. Bioorg. Med. Chem. Lett. 2016;26:5931–5935. doi: 10.1016/j.bmcl.2016.10.091. PubMed DOI
Peperidou A., Pontiki E., Hadjipavlou-Litina D., Voulgari E., Avgoustakis K. Multifunctional cinnamic acid derivatives. Molecules. 2017;22:1247. doi: 10.3390/molecules22081247. PubMed DOI PMC
Lima T.C., Ferreira A.R., Silva D.F., Lima E.O., de Sousa D.P. Antifungal activity of cinnamic acid and benzoic acid esters against Candida albicans strains. Nat. Prod. Res. 2018;32:572–575. doi: 10.1080/14786419.2017.1317776. PubMed DOI
Dolab J.G., Lima B., Spaczynska E., Kos J., Cano N.H., Feresin G., Tapia A., Garibotto F., Petenatti E., Olivella M., et al. Antimicrobial activity of Annona emarginata (Schltdl.) H. Rainer and most active isolated compound against clinically important bacteria. Molecules. 2018;23:1187. doi: 10.3390/molecules23051187. PubMed DOI PMC
FRAC Code List 2018. [(accessed on 18 June 2018)]; Available online: http://www.frac.info/docs/default-source/publications/frac-code-list/frac_code_list_2018-final.pdf?sfvrsn=6144b9a_2.
WHO . Global Antimicrobial Resistance Surveillance System (GLASS) Report. HO Press; Geneva, Switzerland: 2017.
Gonec T., Bobal P., Sujan J., Pesko M., Guo J., Kralova K., Pavlacka L., Vesely L., Kreckova E., Kos J., et al. Investigating the spectrum of biological activity of substituted quinoline-2-carboxamides and their isosteres. Molecules. 2012;17:613–644. doi: 10.3390/molecules17010613. PubMed DOI PMC
Kos J., Nevin E., Soral M., Kushkevych I., Gonec T., Bobal P., Kollar P., Coffey A., O’Mahony J., Liptaj T., et al. Synthesis and antimycobacterial properties of ring-substituted 6-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2015;23:2035–2043. doi: 10.1016/j.bmc.2015.03.018. PubMed DOI
Tischer W., Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron-transport. Biochim. Biophys. Acta. 1977;460:113–125. doi: 10.1016/0005-2728(77)90157-8. PubMed DOI
Trebst A., Draber W. Structure activity correlations of recent herbicides in photosynthetic reactions. In: Greissbuehler H., editor. Advances in Pesticide Science. Pergamon Press; Oxford, UK: 1979. pp. 223–234.
Bowyer J.R., Camilleri P., Vermaas W.F.J. In: Herbicides, Topics in Photosynthesis. Baker N.R., Percival M.P., editors. Volume 10. Elsevier; Amsterdam, The Netherlands: 1991. pp. 27–85.
Izawa S. Acceptors and donors for chloroplast electron transport. In: Colowick P., Kaplan N.O., editors. Methods in Enzymology. Volume 69. Academic Press; New York, NY, USA: London, UK: 1980. pp. 413–434. Part C.
Good N.E. Inhibitors of the Hill reaction. Plant Physiol. 1961;36:788–803. doi: 10.1104/pp.36.6.788. PubMed DOI PMC
Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D., Kovacevic Z., Coffey A., et al. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC
Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI
Kralova K., Perina M., Waisser K., Jampilek J. Structure-activity relationships of N-benzylsalicylamides for inhibition of photosynthetic electron transport. Med. Chem. 2015;11:156–164. doi: 10.2174/1573406410666140815125004. PubMed DOI
Gonec T., Kralova K., Pesko M., Jampilek J. Antimycobacterial N-Alkoxyphenylhydroxynaphthalene-carboxamides Affecting Photosystem II. Bioorg. Med. Chem. Lett. 2017;27:1881–1885. doi: 10.1016/j.bmcl.2017.03.050. PubMed DOI
Gonec T., Kos J., Pesko M., Dohanosova J., Oravec M., Liptaj T., Kralova K., Jampilek J. Halogenated 1-Hydroxynaphthalene-2-carboxanilides Affecting Photosynthetic Electron Transport in Photosystem II. Molecules. 2017;22:1709. doi: 10.3390/molecules22101709. PubMed DOI PMC
Shaner D.L. Herbicide safety relative to common targets in plants and mammals. Pest. Manag. Sci. 2004;60:17–24. doi: 10.1002/ps.782. PubMed DOI
Delaney J., Clarke E., Hughes D., Rice M. Modern agrochemical research: A missed opportunity for drug discovery? Drug Discov. Today. 2006;11:839–845. doi: 10.1016/j.drudis.2006.07.002. PubMed DOI
Duke S.O. Herbicide and pharmaceutical relationships. Weed Sci. 2010;58:334–339. doi: 10.1614/WS-09-102.1. DOI
Myung K., Klittich C.J. Can agricultural fungicides accelerate the discovery of human antifungal drugs? Drug Discov. Today. 2015;20:7–10. doi: 10.1016/j.drudis.2014.08.010. PubMed DOI
Jampilek J. Potential of agricultural fungicides for antifungal drug discovery. Expert Opin. Drug Dis. 2016;11:1–9. doi: 10.1517/17460441.2016.1110142. PubMed DOI
Pliska V. Methods and Principles in Medicinal Chemistry. In: Pliska V., Testa B., van der Waterbeemd H., editors. Lipophilicity in Drug Action and Toxicology. 1st ed. Volume 4 Wiley-VCH; Weinheim, Germany: 1996.
Zadrazilova I., Pospisilova S., Pauk K., Imramovsky A., Vinsova J., Cizek A., Jampilek J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. Biomed Res. Int. 2015;2015:349534. doi: 10.1155/2015/349534. PubMed DOI PMC
Zadrazilova I., Pospisilova S., Masarikova M., Imramovsky A., Monreal-Ferriz J., Vinsova J., Cizek A., Jampilek J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus. Eur. J. Pharm. Sci. 2015;77:197–207. doi: 10.1016/j.ejps.2015.06.009. PubMed DOI
Oravcova V., Zurek L., Townsend A., Clark A.B., Ellis J.C., Cizek A. American crows as carriers of vancomycin-resistant enterococci with vanA gene. Environ. Microbiol. 2014;16:939–949. doi: 10.1111/1462-2920.12213. PubMed DOI
Pospisilova S., Michnova H., Kauerova T., Pauk K., Kollar P., Vinsova J., Imramovsky A., Cizek A., Jampilek J. In vitro activity of salicylamide derivatives against vancomycin-resistant enterococci. Bioorg. Med. Chem. Lett. 2018;28:2184–2188. doi: 10.1016/j.bmcl.2018.05.011. PubMed DOI
Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007.
Bonapace C.R., Bosso J.A., Friedrich L.V., White R.L. Comparison of methods of interpretation of checkerboard synergy testing. Diagn. Microbiol. Infect. Dis. 2002;44:363–366. doi: 10.1016/S0732-8893(02)00473-X. PubMed DOI
Helander I.M., Alakomi H.L., Latva-Kala K., Mattila-Sandholm T., Pol I., Smid E.J., Gorris L.G.M., von Wright A. Characterization of the action of selected essential oil components on gram negative bacteria. J. Agric. Food Chem. 1998;46:3590–3595. doi: 10.1021/jf980154m. DOI
Ultee A., Bennik M.H.J., Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002;68:1561–1568. doi: 10.1128/AEM.68.4.1561-1568.2002. PubMed DOI PMC
Gill A.O., Holley R.A. Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. Int. J. Food Microbiol. 2006;3:170–174. doi: 10.1016/j.ijfoodmicro.2006.04.046. PubMed DOI
Langeveld W.T., Veldhuizen E.J., Burt S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014;40:76–94. doi: 10.3109/1040841X.2013.763219. PubMed DOI
Hemaiswarya S., Doble M. Synergistic interaction of phenylpropanoids with antibiotics against bacteria. J. Med. Microbiol. 2010;59:1469–1476. doi: 10.1099/jmm.0.022426-0. PubMed DOI
Kim Y.G., Lee J.H., Kim S.I., Baek K.H., Lee J. Cinnamon bark oil and its components inhibit biofilm formation and toxin production. Int. J. Food Microbiol. 2015;195:30–39. doi: 10.1016/j.ijfoodmicro.2014.11.028. PubMed DOI
Brackman G., Defoirdt T., Miyamoto C., Bossier P., Van Calenbergh S., Nelis H., Coenye T. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol. 2008;8:149. doi: 10.1186/1471-2180-8-149. PubMed DOI PMC
Zodrow K.R., Schiffman J.D., Elimelech M. Biodegradable polymer (PLGA) coatings featuring cinnamaldehyde and carvacrol mitigate biofilm formation. Langmuir. 2012;28:13993–13999. doi: 10.1021/la303286v. PubMed DOI
Jia P., Xue Y.J., Duan X.J., Shao S.H. Effect of cinnamaldehyde on biofilm formation and sarA expression by methicillin-resistant Staphylococcus aureus. Lett. Appl. Microbiol. 2011;53:409–416. doi: 10.1111/j.1472-765X.2011.03122.x. PubMed DOI
Brackman G., Coenye T. Quorum sensing inhibitors as anti-biofilm agents. Curr. Pharm. Des. 2015;21:5–11. doi: 10.2174/1381612820666140905114627. PubMed DOI
Niu C., Afre S., Gilbert E.S. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett. Appl. Microbiol. 2006;43:489–494. doi: 10.1111/j.1472-765X.2006.02001.x. PubMed DOI
Nuryastuti T., van der Mei H.C., Busscher H.J., Iravati S., Aman A.T., Krom B.P. Effect of cinnamon oil on icaA expression and biofilm formation by Staphylococcus epidermidis. Appl. Environ. Microbiol. 2009;75:6850–6855. doi: 10.1128/AEM.00875-09. PubMed DOI PMC
Budzynska A., Wieckowska-Szakiel M., Sadowska B., Kalemba D., Rozalska B. Antibiofilm activity of selected plant essential oils and their major components. Pol. J. Microbiol. 2011;60:35–41. PubMed
Kaplan J.B. Antibiotic-induced biofilm formation. Int. J. Artif. Organs. 2011;34:737–751. doi: 10.5301/ijao.5000027. PubMed DOI
Mirani Z.A., Jamil N. Effect of sub-lethal doses of vancomycin and oxacillin on biofilm formation by vancomycin intermediate resistant Staphylococcus aureus. J. Basic Microbiol. 2011;51:191–195. doi: 10.1002/jobm.201000221. PubMed DOI
Zheng H., Lu L., Wang B., Pu S., Zhang X., Zhu G., Shi W., Zhang L., Wang H., Wang S., et al. Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS ONE. 2008;3:e2375. doi: 10.1371/journal.pone.0002375. PubMed DOI PMC
Bueno J. Antitubercular in vitro drug discovery: Tools for begin the search. In: Cardona P.J., editor. Understanding Tuberculosis-New Approaches to Fighting against Drug Resistance. InTech; Rijeka, Croatia: 2012. pp. 147–168.
Kos J., Zadrazilova I., Nevin E., Soral M., Gonec T., Kollar P., Oravec M., Coffey A., O’Mahony J., Liptaj T., et al. Ring-substituted 8-Hydroxyquinoline-2-carboxanilides as potential antimycobacterial agents. Bioorg. Med. Chem. 2015;23:4188–4196. doi: 10.1016/j.bmc.2015.06.047. PubMed DOI
Gonec T., Zadrazilova I., Nevin E., Kauerova T., Pesko M., Kos J., Oravec M., Kollar P., Coffey A., O’Mahony J., et al. Synthesis and biological evaluation of N-alkoxyphenyl-3-hydroxynaphthalene-2-carbox-anilides. Molecules. 2015;20:9767–9787. doi: 10.3390/molecules20069767. PubMed DOI PMC
Gonec T., Pospisilova S., Kauerova T., Kos J., Dohanosova J., Oravec M., Kollar P., Coffey A., Liptaj T., Cizek A., et al. N-Alkoxyphenylhydroxynaphthalenecarboxamides and their antimycobacterial activity. Molecules. 2016;21:1068. doi: 10.3390/molecules21081068. PubMed DOI PMC
Zumla A., Nahid P., Cole S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 2013;12:388–404. doi: 10.1038/nrd4001. PubMed DOI
Upadhayaya R.S., Vandavasi J.K., Kardile R.A., Lahore S.V., Dixit S.S., Deokar H.S., Shinde P.D., Sarmah M.P., Chattopadhyaya J. Novel quinoline and naphthalene derivatives as potent antimycobacterial agents. Eur. J. Med. Chem. 2010;45:1854–1867. doi: 10.1016/j.ejmech.2010.01.024. PubMed DOI
Wang Z., Li L., Zhou Z., Geng Y., Chen Y., Sun T. Design, synthesis, configuration research, and in vitro antituberculosis activities of two chiral naphthylamine substituted analogs of bedaquiline. J. Heterocycl. Chem. 2017;54:1024–1030. doi: 10.1002/jhet.2670. DOI
Tong A.S.T., Choi P.J., Blaser A., Sutherland H.S., Tsang S.K.Y., Guillemont J., Motte M., Cooper C.B., Andries K., van den Broeck W., et al. 6-Cyano analogues of bedaquiline as less lipophilic and potentially safer diarylquinolines for tuberculosis. ACS Med. Chem. Lett. 2017;8:1019–10242. doi: 10.1021/acsmedchemlett.7b00196. PubMed DOI PMC
Chen Y.L., Huang S.T., Sun F.M., Chiang Y.L., Chiang C.J., Tsai C.M., Weng C.J. Transformation of cinnamic acid from trans- to cis-form raises a notable bactericidal and synergistic activity against multiple-drug resistant Mycobacterium tuberculosis. Eur. J. Pharm. Sci. 2011;43:188–194. doi: 10.1016/j.ejps.2011.04.012. PubMed DOI
De P., Koumba Y.G., Constant P., Bedos-Belval F., Duran H., Saffon N., Daffe M., Baltas M. Design, synthesis, and biological evaluation of new cinnamic derivatives as antituberculosis agents. J. Med. Chem. 2011;54:1449–1461. doi: 10.1021/jm101510d. PubMed DOI
De P., Veau D., Bedos-Belval F., Chassaing S., Baltas M. Cinnamic derivatives in tuberculosis. In: Cardona P.J., editor. Understanding Tuberculosis-New Approaches to Fighting against Drug Resistance. InTech; Rijeka, Croatia: 2012. pp. 337–362.
Adeniji S.E., Uba S., Uzairu A. Quantitative structure–activity relationship and molecular docking of 4-alkoxy-cinnamic analogues as anti-mycobacterium tuberculosis. J. King Saud Uni. Sci. 2018 doi: 10.1016/j.jksus.2018.02.005. DOI
Degola F., Morcia C., Bisceglie F., Mussi F., Tumino G., Ghizzoni R., Pelosi G., Terzi V., Buschini A., Restivo F.M., et al. In vitro evaluation of the activity of thiosemicarbazone derivatives against mycotoxigenic fungi affecting cereals. Int. J. Food Microbiol. 2015;200:104–111. doi: 10.1016/j.ijfoodmicro.2015.02.009. PubMed DOI
Zhou K., Chen D., Li B., Zhang B., Miao F., Zhou L. Bioactivity and structure-activity relationship of cinnamic acid esters and their derivatives as potential antifungal agents for plant protection. PLoS ONE. 2017;12:e0176189. doi: 10.1371/journal.pone.0176189. PubMed DOI PMC
Krishnendu A., Dutta A.K., Pradhan P. Bipolaris sorokiniana’(Sacc.) Shoem.: The most destructive wheat fungal pathogen in the warmer areas. Aust. J. Crop Sci. 2011;5:1064–1071.
Saari E.E. Leaf blight disease and associated soil borne fungal pathogens of wheat in South and Southeast Asia. In: Duveiller E., Dubin H.J., Reeves J., McNab A., editors. Helminthosporium Blights of Wheat: Spot Blotch and Tan Spot. CIMMYT; Texcoco de Mora, Mexico: 1998. pp. 37–51.
Sundheim L., Brodal G., Hofgaard I.S., Rafoss T. Temporal variation of mycotoxin producing fungi in norwegian cereals. Microorganisms. 2013;1:188–198. doi: 10.3390/microorganisms1010188. PubMed DOI PMC
Placinta C.M., D’Mello J.P.F., MacDonald A.M.C. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim. Feed Sci. Technol. 1999;78:21–37. doi: 10.1016/S0377-8401(98)00278-8. DOI
Tortora G.J., Funke B.R., Case C.L. Microbiology: An introduction. 10th ed. Benjamin Cummings; San Francisco, CA, USA: 2010.
ROCHE Cell proliferation reagent WST-1. Roche Diagnostics GmbH, Mannheim, Germany. [(accessed on 26 June 2018)];2011 Available online: https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Roche/Bulletin/1/cellprorobul.pdf.
Kauerova T., Kos J., Gonec T., Jampilek J., Kollar P. Antiproliferative and pro-apoptotic effect of novel nitro-substituted hydroxynaphthanilides on human cancer cell lines. Int. J. Mol. Sci. 2016;17:1219. doi: 10.3390/ijms17081219. PubMed DOI PMC
Suffness M., Douros J. Current status of the NCI plant and animal product program. J. Nat. Prod. 1982;45:1–14. doi: 10.1021/np50019a001. PubMed DOI
Jampilek J., Kralova K., Pesko M., Kos J. Ring-substituted 8-hydroxyquinoline-2-carboxanilides as photosystem II inhibitors. Bioorg. Med. Chem. Lett. 2016;26:3862–3865. doi: 10.1016/j.bmcl.2016.07.021. PubMed DOI
Fajkusova D., Pesko M., Keltosova S., Guo J., Oktabec Z., Vejsova M., Kollar P., Coffey A., Csollei J., Kralova K., et al. Anti-infective and herbicidal activity of N-substituted 2-aminobenzothiazoles. Bioorg. Med. Chem. 2012;20:7059–7068. doi: 10.1016/j.bmc.2012.10.007. PubMed DOI
Gonec T., Kos J., Zadrazilova I., Pesko M., Govender R., Keltosova S., Kollar B., Imramovsky A., O’Mahony J., Coffey A., et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC
Kralova K., Sersen F., Cizmarik J. Inhibitory effect of piperidinoethylesters of alkoxyphenylcarbamic acids on photosynthesis. Gen. Physiol. Biophys. 1992;11:261–267. PubMed
Kralova K., Bujdakova H., Kuchta T., Loos D. Correlation between biological activity and the structure of 6-amino-2-R-thiobenzothiazoles. Anti-yeast activity and inhibition of photochemical activity of chloroplasts. Pharmazie. 1994;49:460–461. PubMed
Kralova K., Kallova J., Loos D., Devinsky F. Correlation between biological activity and the structure of N,N’-bis(alkyldimethyl)-1,6-hexanediammonium dibromides. Antibacterial activity and inhibition of photochemical activity of chloroplasts. Pharmazie. 1994;49:857–858. PubMed
Kralova K., Bujdakova H., Cizmarik J. Antifungal and antialgal activity of piperidinopropyl esters of alkoxy substituted phenylcarbamic acids. Pharmazie. 1995;50:440–441. PubMed
Szabo E. Isolation and characterization of EBR specific induced chitinases from tobacco (Nicotiana tabacum) Acta Biol. Szeged. 2008;52:251–252.
Zhang M., Lu X., Zhang H.J., Li N., Xiao Y., Zhu H.L., Ye Y.H. Synthesis, structure, and biological assay of cinnamic amides as potential EGFR kinase inhibitors. Med. Chem. Res. 2013;22:986–994. doi: 10.1007/s00044-012-0093-z. DOI
Lee C.C., Lo Y., Ho L.J., Lai J.H., Lien S.B., Lin L.C., Chen C.L., Chen T.C., Liu F.C., Huang H.S. A new application of parallel synthesis strategy for discovery of amide-linked small molecules as potent chondroprotective agents in TNF-α-stimulated chondrocytes. PLoS ONE. 2016;11:e0149317. doi: 10.1371/journal.pone.0149317. PubMed DOI PMC
Clinical and Laboratory Standards Institute . Performance Standards for Antimicrobial Susceptibility Testing. CLSI; Wayne, PA, USA: 2012. The 8th Informational Supplement Document. M100-S22.
Abate G., Mshana R.N., Miorner H. Evaluation of a colorimetric assay based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 1998;2:1011–1016. PubMed
De Lucca A.J., Walsh T.J., Daigle D.J. N-acetylcysteine inhibits germination of conidia and growth of Aspergillus spp. and Fusarium spp. Antimicrob. Agents Chemother. 1996;40:1274–1276. PubMed PMC
Masarovicova E., Kralova K. Approaches to Measuring Plant Photosynthesis Activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd ed. Taylor & Francis Group; Boca Raton, FL, USA: 2005. pp. 617–656.
Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.
Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems
Trifluoromethylcinnamanilide Michael Acceptors for Treatment of Resistant Bacterial Infections
Insights into Antimalarial Activity of N-Phenyl-Substituted Cinnamanilides
Advances in Nanostructures for Antimicrobial Therapy
Study of Biological Activities and ADMET-Related Properties of Novel Chlorinated N-arylcinnamamides
Biological Activities and ADMET-Related Properties of Novel Set of Cinnamanilides
Investigation of Anti-Inflammatory Potential of N-Arylcinnamamide Derivatives