• This record comes from PubMed

Synthesis and Spectrum of Biological Activities of Novel N-arylcinnamamides

. 2018 Aug 07 ; 19 (8) : . [epub] 20180807

Language English Country Switzerland Media electronic

Document type Journal Article

: A series of sixteen ring-substituted N-arylcinnamamides was prepared and characterized. Primary in vitro screening of all the synthesized compounds was performed against Staphylococcus aureus, three methicillin-resistant S. aureus strains, Mycobacterium tuberculosis H37Ra, Fusarium avenaceum, and Bipolaris sorokiniana. Several of the tested compounds showed antistaphylococcal, antitubercular, and antifungal activities comparable with or higher than those of ampicillin, isoniazid, and benomyl. (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-phenylprop-2-enamide and (2E)-3-phenyl-N-[3-(trifluoromethyl)phenyl]prop-2-enamide showed the highest activities (MICs = 22.27 and 27.47 µM, respectively) against all four staphylococcal strains and against M.tuberculosis. These compounds showed an activity against biofilm formation of S.aureus ATCC 29213 in concentrations close to MICs and an ability to increase the activity of clinically used antibiotics with different mechanisms of action (vancomycin, ciprofloxacin, and tetracycline). In time-kill studies, a decrease of CFU/mL of >99% after 8 h from the beginning of incubation was observed. (2E)-N-(3,5-Dichlorophenyl)- and (2E)-N-(3,4-dichlorophenyl)-3-phenylprop-2-enamide had a MIC = 27.38 µM against M. tuberculosis, while a significant decrease (22.65%) of mycobacterial cell metabolism determined by the MTT assay was observed for the 3,5-dichlorophenyl derivative. (2E)-N-(3-Fluorophenyl)- and (2E)-N-(3-methylphenyl)-3-phenylprop-2-enamide exhibited MICs = 16.58 and 33.71 µM, respectively, against B. sorokiniana. The screening of the cytotoxicity of the most effective antimicrobial compounds was performed using THP-1 cells, and these chosen compounds did not shown any significant lethal effect. The compounds were also evaluated for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. (2E)-N-(3,5-dichlorophenyl)-3-phenylprop-2-enamide (IC50 = 5.1 µM) was the most active PET inhibitor. Compounds with fungicide potency did not show any in vivo toxicity against Nicotiana tabacum var. Samsun. The structure⁻activity relationships are discussed.

See more in PubMed

Lichtenthaler H.K., Schweiger J. Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants. J. Plant Physiol. 1998;152:272–282. doi: 10.1016/S0176-1617(98)80142-9. DOI

Vogt T. Phenylpropanoid biosynthesis. Mol. Plant. 2010;3:2–20. doi: 10.1093/mp/ssp106. PubMed DOI

Adisakwattana S., Chantarasinlapin P., Thammarat H., Yibchok-Anun S. A series of cinnamic acid derivatives and their inhibitory activity on intestinal alpha-glucosidase. J. Enzyme Inhib. Med. Chem. 2009;24:1194–1200. doi: 10.1080/14756360902779326. PubMed DOI

Berrin O., Murat K., Ilkay O. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol. 2011;49:396–402. PubMed

Sharma P. Cinnamic acid derivatives: A new chapter of various pharmacological activities. J. Chem. Pharm. Res. 2011;3:403–423.

Sova M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem. 2012;12:749–767. doi: 10.2174/138955712801264792. PubMed DOI

Korosec B., Sova M., Turk S., Krasevec N., Novak M., Lah L., Stojan J., Podobnik B., Berne S., Zupanec N., et al. Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53) J. Appl. Microbiol. 2014;116:955–966. doi: 10.1111/jam.12417. PubMed DOI

Guzman J.D. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules. 2014;19:19292–19349. doi: 10.3390/molecules191219292. PubMed DOI PMC

Peperidou A., Kapoukranidou D., Kontogiorgis C., Hadjipavlou-Litina D. Multitarget molecular hybrids of cinnamic acids. Molecules. 2014;19:20197–20226. doi: 10.3390/molecules191220197. PubMed DOI PMC

Pontiki E., Hadjipavlou-Litina D., Litinas K., Geromichalos G. Novel cinnamic acid derivatives as antioxidant and anticancer agents: Design, synthesis and modeling studies. Molecules. 2014;19:9655–9674. doi: 10.3390/molecules19079655. PubMed DOI PMC

Hadjipavlou-Litina D., Pontiki E. Aryl-acetic and cinnamic acids as lipoxygenase inhibitors with antioxidant, anti-inflammatory, and anticancer activity. Methods Mol. Biol. 2015;1208:361–377. PubMed

Su P., Shi Y., Wang J., Shen X., Zhang J. Anticancer agents derived from natural cinnamic acids. Anticancer Agents Med. Chem. 2015;15:980–987. doi: 10.2174/1871520615666150130111120. PubMed DOI

De Vita D., Simonetti G., Pandolfi F., Costi R., Di Santo R., D’Auria F.D., Scipione L. Exploring the anti-biofilm activity of cinnamic acid derivatives in Candida albicans. Bioorg. Med. Chem. Lett. 2016;26:5931–5935. doi: 10.1016/j.bmcl.2016.10.091. PubMed DOI

Peperidou A., Pontiki E., Hadjipavlou-Litina D., Voulgari E., Avgoustakis K. Multifunctional cinnamic acid derivatives. Molecules. 2017;22:1247. doi: 10.3390/molecules22081247. PubMed DOI PMC

Lima T.C., Ferreira A.R., Silva D.F., Lima E.O., de Sousa D.P. Antifungal activity of cinnamic acid and benzoic acid esters against Candida albicans strains. Nat. Prod. Res. 2018;32:572–575. doi: 10.1080/14786419.2017.1317776. PubMed DOI

Dolab J.G., Lima B., Spaczynska E., Kos J., Cano N.H., Feresin G., Tapia A., Garibotto F., Petenatti E., Olivella M., et al. Antimicrobial activity of Annona emarginata (Schltdl.) H. Rainer and most active isolated compound against clinically important bacteria. Molecules. 2018;23:1187. doi: 10.3390/molecules23051187. PubMed DOI PMC

FRAC Code List 2018. [(accessed on 18 June 2018)]; Available online: http://www.frac.info/docs/default-source/publications/frac-code-list/frac_code_list_2018-final.pdf?sfvrsn=6144b9a_2.

WHO . Global Antimicrobial Resistance Surveillance System (GLASS) Report. HO Press; Geneva, Switzerland: 2017.

Gonec T., Bobal P., Sujan J., Pesko M., Guo J., Kralova K., Pavlacka L., Vesely L., Kreckova E., Kos J., et al. Investigating the spectrum of biological activity of substituted quinoline-2-carboxamides and their isosteres. Molecules. 2012;17:613–644. doi: 10.3390/molecules17010613. PubMed DOI PMC

Kos J., Nevin E., Soral M., Kushkevych I., Gonec T., Bobal P., Kollar P., Coffey A., O’Mahony J., Liptaj T., et al. Synthesis and antimycobacterial properties of ring-substituted 6-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2015;23:2035–2043. doi: 10.1016/j.bmc.2015.03.018. PubMed DOI

Tischer W., Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron-transport. Biochim. Biophys. Acta. 1977;460:113–125. doi: 10.1016/0005-2728(77)90157-8. PubMed DOI

Trebst A., Draber W. Structure activity correlations of recent herbicides in photosynthetic reactions. In: Greissbuehler H., editor. Advances in Pesticide Science. Pergamon Press; Oxford, UK: 1979. pp. 223–234.

Bowyer J.R., Camilleri P., Vermaas W.F.J. In: Herbicides, Topics in Photosynthesis. Baker N.R., Percival M.P., editors. Volume 10. Elsevier; Amsterdam, The Netherlands: 1991. pp. 27–85.

Izawa S. Acceptors and donors for chloroplast electron transport. In: Colowick P., Kaplan N.O., editors. Methods in Enzymology. Volume 69. Academic Press; New York, NY, USA: London, UK: 1980. pp. 413–434. Part C.

Good N.E. Inhibitors of the Hill reaction. Plant Physiol. 1961;36:788–803. doi: 10.1104/pp.36.6.788. PubMed DOI PMC

Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D., Kovacevic Z., Coffey A., et al. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC

Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI

Kralova K., Perina M., Waisser K., Jampilek J. Structure-activity relationships of N-benzylsalicylamides for inhibition of photosynthetic electron transport. Med. Chem. 2015;11:156–164. doi: 10.2174/1573406410666140815125004. PubMed DOI

Gonec T., Kralova K., Pesko M., Jampilek J. Antimycobacterial N-Alkoxyphenylhydroxynaphthalene-carboxamides Affecting Photosystem II. Bioorg. Med. Chem. Lett. 2017;27:1881–1885. doi: 10.1016/j.bmcl.2017.03.050. PubMed DOI

Gonec T., Kos J., Pesko M., Dohanosova J., Oravec M., Liptaj T., Kralova K., Jampilek J. Halogenated 1-Hydroxynaphthalene-2-carboxanilides Affecting Photosynthetic Electron Transport in Photosystem II. Molecules. 2017;22:1709. doi: 10.3390/molecules22101709. PubMed DOI PMC

Shaner D.L. Herbicide safety relative to common targets in plants and mammals. Pest. Manag. Sci. 2004;60:17–24. doi: 10.1002/ps.782. PubMed DOI

Delaney J., Clarke E., Hughes D., Rice M. Modern agrochemical research: A missed opportunity for drug discovery? Drug Discov. Today. 2006;11:839–845. doi: 10.1016/j.drudis.2006.07.002. PubMed DOI

Duke S.O. Herbicide and pharmaceutical relationships. Weed Sci. 2010;58:334–339. doi: 10.1614/WS-09-102.1. DOI

Myung K., Klittich C.J. Can agricultural fungicides accelerate the discovery of human antifungal drugs? Drug Discov. Today. 2015;20:7–10. doi: 10.1016/j.drudis.2014.08.010. PubMed DOI

Jampilek J. Potential of agricultural fungicides for antifungal drug discovery. Expert Opin. Drug Dis. 2016;11:1–9. doi: 10.1517/17460441.2016.1110142. PubMed DOI

Pliska V. Methods and Principles in Medicinal Chemistry. In: Pliska V., Testa B., van der Waterbeemd H., editors. Lipophilicity in Drug Action and Toxicology. 1st ed. Volume 4 Wiley-VCH; Weinheim, Germany: 1996.

Zadrazilova I., Pospisilova S., Pauk K., Imramovsky A., Vinsova J., Cizek A., Jampilek J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. Biomed Res. Int. 2015;2015:349534. doi: 10.1155/2015/349534. PubMed DOI PMC

Zadrazilova I., Pospisilova S., Masarikova M., Imramovsky A., Monreal-Ferriz J., Vinsova J., Cizek A., Jampilek J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus. Eur. J. Pharm. Sci. 2015;77:197–207. doi: 10.1016/j.ejps.2015.06.009. PubMed DOI

Oravcova V., Zurek L., Townsend A., Clark A.B., Ellis J.C., Cizek A. American crows as carriers of vancomycin-resistant enterococci with vanA gene. Environ. Microbiol. 2014;16:939–949. doi: 10.1111/1462-2920.12213. PubMed DOI

Pospisilova S., Michnova H., Kauerova T., Pauk K., Kollar P., Vinsova J., Imramovsky A., Cizek A., Jampilek J. In vitro activity of salicylamide derivatives against vancomycin-resistant enterococci. Bioorg. Med. Chem. Lett. 2018;28:2184–2188. doi: 10.1016/j.bmcl.2018.05.011. PubMed DOI

Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007.

Bonapace C.R., Bosso J.A., Friedrich L.V., White R.L. Comparison of methods of interpretation of checkerboard synergy testing. Diagn. Microbiol. Infect. Dis. 2002;44:363–366. doi: 10.1016/S0732-8893(02)00473-X. PubMed DOI

Helander I.M., Alakomi H.L., Latva-Kala K., Mattila-Sandholm T., Pol I., Smid E.J., Gorris L.G.M., von Wright A. Characterization of the action of selected essential oil components on gram negative bacteria. J. Agric. Food Chem. 1998;46:3590–3595. doi: 10.1021/jf980154m. DOI

Ultee A., Bennik M.H.J., Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002;68:1561–1568. doi: 10.1128/AEM.68.4.1561-1568.2002. PubMed DOI PMC

Gill A.O., Holley R.A. Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. Int. J. Food Microbiol. 2006;3:170–174. doi: 10.1016/j.ijfoodmicro.2006.04.046. PubMed DOI

Langeveld W.T., Veldhuizen E.J., Burt S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014;40:76–94. doi: 10.3109/1040841X.2013.763219. PubMed DOI

Hemaiswarya S., Doble M. Synergistic interaction of phenylpropanoids with antibiotics against bacteria. J. Med. Microbiol. 2010;59:1469–1476. doi: 10.1099/jmm.0.022426-0. PubMed DOI

Kim Y.G., Lee J.H., Kim S.I., Baek K.H., Lee J. Cinnamon bark oil and its components inhibit biofilm formation and toxin production. Int. J. Food Microbiol. 2015;195:30–39. doi: 10.1016/j.ijfoodmicro.2014.11.028. PubMed DOI

Brackman G., Defoirdt T., Miyamoto C., Bossier P., Van Calenbergh S., Nelis H., Coenye T. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol. 2008;8:149. doi: 10.1186/1471-2180-8-149. PubMed DOI PMC

Zodrow K.R., Schiffman J.D., Elimelech M. Biodegradable polymer (PLGA) coatings featuring cinnamaldehyde and carvacrol mitigate biofilm formation. Langmuir. 2012;28:13993–13999. doi: 10.1021/la303286v. PubMed DOI

Jia P., Xue Y.J., Duan X.J., Shao S.H. Effect of cinnamaldehyde on biofilm formation and sarA expression by methicillin-resistant Staphylococcus aureus. Lett. Appl. Microbiol. 2011;53:409–416. doi: 10.1111/j.1472-765X.2011.03122.x. PubMed DOI

Brackman G., Coenye T. Quorum sensing inhibitors as anti-biofilm agents. Curr. Pharm. Des. 2015;21:5–11. doi: 10.2174/1381612820666140905114627. PubMed DOI

Niu C., Afre S., Gilbert E.S. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett. Appl. Microbiol. 2006;43:489–494. doi: 10.1111/j.1472-765X.2006.02001.x. PubMed DOI

Nuryastuti T., van der Mei H.C., Busscher H.J., Iravati S., Aman A.T., Krom B.P. Effect of cinnamon oil on icaA expression and biofilm formation by Staphylococcus epidermidis. Appl. Environ. Microbiol. 2009;75:6850–6855. doi: 10.1128/AEM.00875-09. PubMed DOI PMC

Budzynska A., Wieckowska-Szakiel M., Sadowska B., Kalemba D., Rozalska B. Antibiofilm activity of selected plant essential oils and their major components. Pol. J. Microbiol. 2011;60:35–41. PubMed

Kaplan J.B. Antibiotic-induced biofilm formation. Int. J. Artif. Organs. 2011;34:737–751. doi: 10.5301/ijao.5000027. PubMed DOI

Mirani Z.A., Jamil N. Effect of sub-lethal doses of vancomycin and oxacillin on biofilm formation by vancomycin intermediate resistant Staphylococcus aureus. J. Basic Microbiol. 2011;51:191–195. doi: 10.1002/jobm.201000221. PubMed DOI

Zheng H., Lu L., Wang B., Pu S., Zhang X., Zhu G., Shi W., Zhang L., Wang H., Wang S., et al. Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS ONE. 2008;3:e2375. doi: 10.1371/journal.pone.0002375. PubMed DOI PMC

Bueno J. Antitubercular in vitro drug discovery: Tools for begin the search. In: Cardona P.J., editor. Understanding Tuberculosis-New Approaches to Fighting against Drug Resistance. InTech; Rijeka, Croatia: 2012. pp. 147–168.

Kos J., Zadrazilova I., Nevin E., Soral M., Gonec T., Kollar P., Oravec M., Coffey A., O’Mahony J., Liptaj T., et al. Ring-substituted 8-Hydroxyquinoline-2-carboxanilides as potential antimycobacterial agents. Bioorg. Med. Chem. 2015;23:4188–4196. doi: 10.1016/j.bmc.2015.06.047. PubMed DOI

Gonec T., Zadrazilova I., Nevin E., Kauerova T., Pesko M., Kos J., Oravec M., Kollar P., Coffey A., O’Mahony J., et al. Synthesis and biological evaluation of N-alkoxyphenyl-3-hydroxynaphthalene-2-carbox-anilides. Molecules. 2015;20:9767–9787. doi: 10.3390/molecules20069767. PubMed DOI PMC

Gonec T., Pospisilova S., Kauerova T., Kos J., Dohanosova J., Oravec M., Kollar P., Coffey A., Liptaj T., Cizek A., et al. N-Alkoxyphenylhydroxynaphthalenecarboxamides and their antimycobacterial activity. Molecules. 2016;21:1068. doi: 10.3390/molecules21081068. PubMed DOI PMC

Zumla A., Nahid P., Cole S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 2013;12:388–404. doi: 10.1038/nrd4001. PubMed DOI

Upadhayaya R.S., Vandavasi J.K., Kardile R.A., Lahore S.V., Dixit S.S., Deokar H.S., Shinde P.D., Sarmah M.P., Chattopadhyaya J. Novel quinoline and naphthalene derivatives as potent antimycobacterial agents. Eur. J. Med. Chem. 2010;45:1854–1867. doi: 10.1016/j.ejmech.2010.01.024. PubMed DOI

Wang Z., Li L., Zhou Z., Geng Y., Chen Y., Sun T. Design, synthesis, configuration research, and in vitro antituberculosis activities of two chiral naphthylamine substituted analogs of bedaquiline. J. Heterocycl. Chem. 2017;54:1024–1030. doi: 10.1002/jhet.2670. DOI

Tong A.S.T., Choi P.J., Blaser A., Sutherland H.S., Tsang S.K.Y., Guillemont J., Motte M., Cooper C.B., Andries K., van den Broeck W., et al. 6-Cyano analogues of bedaquiline as less lipophilic and potentially safer diarylquinolines for tuberculosis. ACS Med. Chem. Lett. 2017;8:1019–10242. doi: 10.1021/acsmedchemlett.7b00196. PubMed DOI PMC

Chen Y.L., Huang S.T., Sun F.M., Chiang Y.L., Chiang C.J., Tsai C.M., Weng C.J. Transformation of cinnamic acid from trans- to cis-form raises a notable bactericidal and synergistic activity against multiple-drug resistant Mycobacterium tuberculosis. Eur. J. Pharm. Sci. 2011;43:188–194. doi: 10.1016/j.ejps.2011.04.012. PubMed DOI

De P., Koumba Y.G., Constant P., Bedos-Belval F., Duran H., Saffon N., Daffe M., Baltas M. Design, synthesis, and biological evaluation of new cinnamic derivatives as antituberculosis agents. J. Med. Chem. 2011;54:1449–1461. doi: 10.1021/jm101510d. PubMed DOI

De P., Veau D., Bedos-Belval F., Chassaing S., Baltas M. Cinnamic derivatives in tuberculosis. In: Cardona P.J., editor. Understanding Tuberculosis-New Approaches to Fighting against Drug Resistance. InTech; Rijeka, Croatia: 2012. pp. 337–362.

Adeniji S.E., Uba S., Uzairu A. Quantitative structure–activity relationship and molecular docking of 4-alkoxy-cinnamic analogues as anti-mycobacterium tuberculosis. J. King Saud Uni. Sci. 2018 doi: 10.1016/j.jksus.2018.02.005. DOI

Degola F., Morcia C., Bisceglie F., Mussi F., Tumino G., Ghizzoni R., Pelosi G., Terzi V., Buschini A., Restivo F.M., et al. In vitro evaluation of the activity of thiosemicarbazone derivatives against mycotoxigenic fungi affecting cereals. Int. J. Food Microbiol. 2015;200:104–111. doi: 10.1016/j.ijfoodmicro.2015.02.009. PubMed DOI

Zhou K., Chen D., Li B., Zhang B., Miao F., Zhou L. Bioactivity and structure-activity relationship of cinnamic acid esters and their derivatives as potential antifungal agents for plant protection. PLoS ONE. 2017;12:e0176189. doi: 10.1371/journal.pone.0176189. PubMed DOI PMC

Krishnendu A., Dutta A.K., Pradhan P. Bipolaris sorokiniana’(Sacc.) Shoem.: The most destructive wheat fungal pathogen in the warmer areas. Aust. J. Crop Sci. 2011;5:1064–1071.

Saari E.E. Leaf blight disease and associated soil borne fungal pathogens of wheat in South and Southeast Asia. In: Duveiller E., Dubin H.J., Reeves J., McNab A., editors. Helminthosporium Blights of Wheat: Spot Blotch and Tan Spot. CIMMYT; Texcoco de Mora, Mexico: 1998. pp. 37–51.

Sundheim L., Brodal G., Hofgaard I.S., Rafoss T. Temporal variation of mycotoxin producing fungi in norwegian cereals. Microorganisms. 2013;1:188–198. doi: 10.3390/microorganisms1010188. PubMed DOI PMC

Placinta C.M., D’Mello J.P.F., MacDonald A.M.C. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim. Feed Sci. Technol. 1999;78:21–37. doi: 10.1016/S0377-8401(98)00278-8. DOI

Tortora G.J., Funke B.R., Case C.L. Microbiology: An introduction. 10th ed. Benjamin Cummings; San Francisco, CA, USA: 2010.

ROCHE Cell proliferation reagent WST-1. Roche Diagnostics GmbH, Mannheim, Germany. [(accessed on 26 June 2018)];2011 Available online: https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Roche/Bulletin/1/cellprorobul.pdf.

Kauerova T., Kos J., Gonec T., Jampilek J., Kollar P. Antiproliferative and pro-apoptotic effect of novel nitro-substituted hydroxynaphthanilides on human cancer cell lines. Int. J. Mol. Sci. 2016;17:1219. doi: 10.3390/ijms17081219. PubMed DOI PMC

Suffness M., Douros J. Current status of the NCI plant and animal product program. J. Nat. Prod. 1982;45:1–14. doi: 10.1021/np50019a001. PubMed DOI

Jampilek J., Kralova K., Pesko M., Kos J. Ring-substituted 8-hydroxyquinoline-2-carboxanilides as photosystem II inhibitors. Bioorg. Med. Chem. Lett. 2016;26:3862–3865. doi: 10.1016/j.bmcl.2016.07.021. PubMed DOI

Fajkusova D., Pesko M., Keltosova S., Guo J., Oktabec Z., Vejsova M., Kollar P., Coffey A., Csollei J., Kralova K., et al. Anti-infective and herbicidal activity of N-substituted 2-aminobenzothiazoles. Bioorg. Med. Chem. 2012;20:7059–7068. doi: 10.1016/j.bmc.2012.10.007. PubMed DOI

Gonec T., Kos J., Zadrazilova I., Pesko M., Govender R., Keltosova S., Kollar B., Imramovsky A., O’Mahony J., Coffey A., et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC

Kralova K., Sersen F., Cizmarik J. Inhibitory effect of piperidinoethylesters of alkoxyphenylcarbamic acids on photosynthesis. Gen. Physiol. Biophys. 1992;11:261–267. PubMed

Kralova K., Bujdakova H., Kuchta T., Loos D. Correlation between biological activity and the structure of 6-amino-2-R-thiobenzothiazoles. Anti-yeast activity and inhibition of photochemical activity of chloroplasts. Pharmazie. 1994;49:460–461. PubMed

Kralova K., Kallova J., Loos D., Devinsky F. Correlation between biological activity and the structure of N,N’-bis(alkyldimethyl)-1,6-hexanediammonium dibromides. Antibacterial activity and inhibition of photochemical activity of chloroplasts. Pharmazie. 1994;49:857–858. PubMed

Kralova K., Bujdakova H., Cizmarik J. Antifungal and antialgal activity of piperidinopropyl esters of alkoxy substituted phenylcarbamic acids. Pharmazie. 1995;50:440–441. PubMed

Szabo E. Isolation and characterization of EBR specific induced chitinases from tobacco (Nicotiana tabacum) Acta Biol. Szeged. 2008;52:251–252.

Zhang M., Lu X., Zhang H.J., Li N., Xiao Y., Zhu H.L., Ye Y.H. Synthesis, structure, and biological assay of cinnamic amides as potential EGFR kinase inhibitors. Med. Chem. Res. 2013;22:986–994. doi: 10.1007/s00044-012-0093-z. DOI

Lee C.C., Lo Y., Ho L.J., Lai J.H., Lien S.B., Lin L.C., Chen C.L., Chen T.C., Liu F.C., Huang H.S. A new application of parallel synthesis strategy for discovery of amide-linked small molecules as potent chondroprotective agents in TNF-α-stimulated chondrocytes. PLoS ONE. 2016;11:e0149317. doi: 10.1371/journal.pone.0149317. PubMed DOI PMC

Clinical and Laboratory Standards Institute . Performance Standards for Antimicrobial Susceptibility Testing. CLSI; Wayne, PA, USA: 2012. The 8th Informational Supplement Document. M100-S22.

Abate G., Mshana R.N., Miorner H. Evaluation of a colorimetric assay based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 1998;2:1011–1016. PubMed

De Lucca A.J., Walsh T.J., Daigle D.J. N-acetylcysteine inhibits germination of conidia and growth of Aspergillus spp. and Fusarium spp. Antimicrob. Agents Chemother. 1996;40:1274–1276. PubMed PMC

Masarovicova E., Kralova K. Approaches to Measuring Plant Photosynthesis Activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd ed. Taylor & Francis Group; Boca Raton, FL, USA: 2005. pp. 617–656.

Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.

Newest 20 citations...

See more in
Medvik | PubMed

Critical view on antimicrobial, antibiofilm and cytotoxic activities of quinazolin-4(3H)-one derived schiff bases and their Cu(II) complexes

. 2024 Apr 15 ; 10 (7) : e29051. [epub] 20240402

Towards Arginase Inhibition: Hybrid SAR Protocol for Property Mapping of Chlorinated N-arylcinnamamides

. 2023 Feb 10 ; 24 (4) : . [epub] 20230210

Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems

. 2022 Dec 01 ; 14 (12) : . [epub] 20221201

Trifluoromethylcinnamanilide Michael Acceptors for Treatment of Resistant Bacterial Infections

. 2022 Dec 01 ; 23 (23) : . [epub] 20221201

Insights into Antimalarial Activity of N-Phenyl-Substituted Cinnamanilides

. 2022 Nov 12 ; 27 (22) : . [epub] 20221112

Advances in Nanostructures for Antimicrobial Therapy

. 2022 Mar 24 ; 15 (7) : . [epub] 20220324

Study of Biological Activities and ADMET-Related Properties of Novel Chlorinated N-arylcinnamamides

. 2022 Mar 15 ; 23 (6) : . [epub] 20220315

Consensus-Based Pharmacophore Mapping for New Set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides

. 2020 Sep 09 ; 21 (18) : . [epub] 20200909

Biological Activities and ADMET-Related Properties of Novel Set of Cinnamanilides

. 2020 Sep 09 ; 25 (18) : . [epub] 20200909

Dibasic Derivatives of Phenylcarbamic Acid as Prospective Antibacterial Agents Interacting with Cytoplasmic Membrane

. 2020 Feb 06 ; 9 (2) : . [epub] 20200206

Investigation of Anti-Inflammatory Potential of N-Arylcinnamamide Derivatives

. 2019 Dec 11 ; 24 (24) : . [epub] 20191211

SAR-mediated Similarity Assessment of the Property Profile for New, Silicon-Based AChE/BChE Inhibitors

. 2019 Oct 29 ; 20 (21) : . [epub] 20191029

Novel Benzene-Based Carbamates for AChE/BChE Inhibition: Synthesis and Ligand/Structure-Oriented SAR Study

. 2019 Mar 27 ; 20 (7) : . [epub] 20190327

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...