Krill Oil Supplementation Reduces Exacerbated Hepatic Steatosis Induced by Thermoneutral Housing in Mice with Diet-Induced Obesity

. 2021 Jan 29 ; 13 (2) : . [epub] 20210129

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33572810

Grantová podpora
17-11027S Czech Science Foundation
722619 H2020 Marie Skłodowska-Curie Actions

Preclinical evidence suggests that n-3 fatty acids EPA and DHA (Omega-3) supplemented as phospholipids (PLs) may be more effective than triacylglycerols (TAGs) in reducing hepatic steatosis. To further test the ability of Omega-3 PLs to alleviate liver steatosis, we used a model of exacerbated non-alcoholic fatty liver disease based on high-fat feeding at thermoneutral temperature. Male C57BL/6N mice were fed for 24 weeks a lard-based diet given either alone (LHF) or supplemented with Omega-3 (30 mg/g diet) as PLs (krill oil; ω3PL) or TAGs (Epax 3000TG concentrate; ω3TG), which had a similar total content of EPA and DHA and their ratio. Substantial levels of TAG accumulation (~250 mg/g) but relatively low inflammation/fibrosis levels were achieved in the livers of control LHF mice. Liver steatosis was reduced by >40% in the ω3PL but not ω3TG group, and plasma ALT levels were markedly reduced (by 68%) in ω3PL mice as well. Krill oil administration also improved hepatic insulin sensitivity, and its effects were associated with high plasma adiponectin levels (150% of LHF mice) along with superior bioavailability of EPA, increased content of alkaloids stachydrine and trigonelline, suppression of lipogenic gene expression, and decreased diacylglycerol levels in the liver. This study reveals that in addition to Omega-3 PLs, other constituents of krill oil, such as alkaloids, may contribute to its strong antisteatotic effects in the liver.

Zobrazit více v PubMed

Tiniakos D.G., Vos M.B., Brunt E.M. Nonalcoholic fatty liver disease: Pathology and pathogenesis. Annu. Rev. Pathol. 2010;5:145–171. doi: 10.1146/annurev-pathol-121808-102132. PubMed DOI

Fabbrini E., Sullivan S., Klein S. Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic, and clinical implications. Hepatology. 2010;51:679–689. doi: 10.1002/hep.23280. PubMed DOI PMC

Younossi Z., Tacke F., Arrese M., Chander Sharma B., Mostafa I., Bugianesi E., Wai-Sun Wong V., Yilmaz Y., George J., Fan J., et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2019;69:2672–2682. doi: 10.1002/hep.30251. PubMed DOI

Marchesini G., Bugianesi E., Forlani G., Cerrelli F., Lenzi M., Manini R., Natale S., Vanni E., Villanova N., Melchionda N., et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology. 2003;37:917–923. doi: 10.1053/jhep.2003.50161. PubMed DOI

Gastaldelli A., Cusi K. From NASH to diabetes and from diabetes to NASH: Mechanisms and treatment options. JHEP Rep. 2019;1:312–328. doi: 10.1016/j.jhepr.2019.07.002. PubMed DOI PMC

Younossi Z., Tampi R., Racilla A., Qiu Y., Burns L., Younossi I., Nader F. Economic and clinical burden of non-alcoholic steatohepatitis in patients with type II diabetes in the United States. Diabetes Care. 2020;43:283–289. doi: 10.2337/dc19-1113. PubMed DOI

EASL. Marchesini G., Day C.P., Dufour J.-F., Canbay A., Nobili V., Ratziu V., Tilg H., EASD. Roden M., et al. EASL–EASD–EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016;64:1388–1402. doi: 10.1016/j.jhep.2016.11.002. PubMed DOI

Bray G.A., Krauss R.M. Overfeeding of polyunsaturated versus saturated fatty acids reduces ectopic fat. Diabetes. 2014;63:2222–2224. doi: 10.2337/db14-0493. PubMed DOI PMC

Rosqvist F., Iggman D., Kullberg J., Cedernaes J., Johansson H.-E., Larsson A., Johansson L., Ahlström H., Arner P., Dahlman I., et al. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes. 2014;63:2356–2368. doi: 10.2337/db13-1622. PubMed DOI

Bjermo H., Iggman D., Kullberg J., Dahlman I., Johansson L., Persson L., Berglund J., Pulkki K., Basu S., Uusitupa M., et al. Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: A randomized controlled trial. Am. J. Clin. Nutr. 2012;95:1003–1012. doi: 10.3945/ajcn.111.030114. PubMed DOI

Luukkonen P.K., Sädevirta S., Zhou Y., Kayser B., Ali A., Ahonen L., Lallukka S., Pelloux V., Gaggini M., Jian C., et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care. 2018;41:1732–1739. doi: 10.2337/dc18-0071. PubMed DOI PMC

Roche H.M., Gibney M.J. Effect of long-chain n−3 polyunsaturated fatty acids on fasting and postprandial triacylglycerol metabolism. Am. J. Clin. Nutr. 2000;71:232s–237s. doi: 10.1093/ajcn/71.1.232s. PubMed DOI

Schuchardt J.P., Neubronner J., Kressel G., Merkel M., Von Schacky C., Hahn A. Moderate doses of EPA and DHA from re-esterified triacylglycerols but not from ethyl-esters lower fasting serum triacylglycerols in statin-treated dyslipidemic subjects: Results from a six month randomized controlled trial. Prostaglandins Leukot. Essent. Fat. Acids. 2011;85:381–386. doi: 10.1016/j.plefa.2011.07.006. PubMed DOI

Pavlisova J., Bardova K., Stankova B., Tvrzicka E., Kopecky J., Rossmeisl M. Corn oil versus lard: Metabolic effects of omega-3 fatty acids in mice fed obesogenic diets with different fatty acid composition. Biochimie. 2016;124:150–162. doi: 10.1016/j.biochi.2015.07.001. PubMed DOI

Flachs P., Rossmeisl M., Bryhn M., Kopecký J. Cellular and molecular effects of n−3 polyunsaturated fatty acids on adipose tissue biology and metabolism. Clin. Sci. 2009;116:1–16. doi: 10.1042/CS20070456. PubMed DOI

Glass C.K., Olefsky J.M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 2012;15:635–645. doi: 10.1016/j.cmet.2012.04.001. PubMed DOI PMC

Calder P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2015;1851:469–484. doi: 10.1016/j.bbalip.2014.08.010. PubMed DOI

Green C.J., Pramfalk C., Charlton C.A., Gunn P.J., Cornfield T., Pavlides M., Karpe F., Hodson L. Hepatic de novo lipogenesis is suppressed and fat oxidation is increased by omega-3 fatty acids at the expense of glucose metabolism. BMJ Open Diabetes Res. Care. 2020;8:e000871. doi: 10.1136/bmjdrc-2019-000871. PubMed DOI PMC

Sanderson L.M., De Groot P.J., Hooiveld G.J., Koppen A., Kalkhoven E., Müller M., Kersten S. Effect of synthetic dietary triglycerides: A novel research paradigm for nutrigenomics. PLoS ONE. 2008;3:e1681. doi: 10.1371/journal.pone.0001681. PubMed DOI PMC

Parker H.M., Johnson N.A., Burdon C.A., Cohn J.S., O’Connor H.T., George J. Omega-3 supplementation and non-alcoholic fatty liver disease: A systematic review and meta-analysis. J. Hepatol. 2012;56:944–951. doi: 10.1016/j.jhep.2011.08.018. PubMed DOI

Scorletti E., Bhatia L., McCormick K.G., Clough G.F., Nash K., Hodson L., Moyses H.E., Calder P.C., Byrne C.D., Study W. Effects of purified eicosapentaenoic and docosahexaenoic acids in nonalcoholic fatty liver disease: Results from the Welcome* study. Hepatology. 2014;60:1211–1221. doi: 10.1002/hep.27289. PubMed DOI

Argo C.K., Patrie J.T., Lackner C., Henry T.D., De Lange E.E., Weltman A.L., Shah N.L., Al-Osaimi A.M., Pramoonjago P., Jayakumar S., et al. Effects of n-3 fish oil on metabolic and histological parameters in NASH: A double-blind, randomized, placebo-controlled trial. J. Hepatol. 2015;62:190–197. doi: 10.1016/j.jhep.2014.08.036. PubMed DOI PMC

De Castro G.S., Calder P.C. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. Clin. Nutr. 2018;37:37–55. doi: 10.1016/j.clnu.2017.01.006. PubMed DOI

Tandy S., Chung R.W.S., Wat E., Kamili A., Berge K., Griinari M., Cohn J.S. Dietary krill oil supplementation reduces hepatic steatosis, glycemia, and hypercholesterolemia in high-fat-fed mice. J. Agric. Food Chem. 2009;57:9339–9345. doi: 10.1021/jf9016042. PubMed DOI

Batetta B., Griinari M., Carta G., Murru E., Ligresti A., Cordeddu L., Giordano E., Sanna F., Bisogno T., Uda S., et al. endocannabinoids may mediate the ability of (n-3) fatty acids to reduce ectopic fat and inflammatory mediators in obese zucker rats. J. Nutr. 2009;139:1495–1501. doi: 10.3945/jn.109.104844. PubMed DOI

Rossmeisl M., Jilkova Z.M., Kuda O., Jelenik T., Medrikova D., Stankova B., Kristinsson B., Haraldsson G.G., Svensen H., Stoknes I., et al. Metabolic effects of n-3 PUFA as phospholipids are superior to triglycerides in mice fed a high-fat diet: Possible role of endocannabinoids. PLoS ONE. 2012;7:e38834. doi: 10.1371/journal.pone.0038834. PubMed DOI PMC

Ibrahim S.H., Hirsova P., Malhi H., Gores G.J. Animal models of nonalcoholic steatohepatitis: Eat, delete, and inflame. Dig. Dis. Sci. 2016;61:1325–1336. doi: 10.1007/s10620-015-3977-1. PubMed DOI PMC

Le Grandois J., Marchioni E., Zhao M., Giuffrida F., Ennahar S., Bindler F. Investigation of natural phosphatidylcholine sources: Separation and identification by liquid chromatography−electrospray ionization−tandem mass spectrometry (LC−ESI−MS2) of molecular species. J. Agric. Food Chem. 2009;57:6014–6020. doi: 10.1021/jf900903e. PubMed DOI

Rossmeisl M., Pavlisova J., Bardova K., Kalendova V., Buresova J., Kuda O., Kroupova P., Stankova B., Tvrzicka E., Fiserova E., et al. Increased plasma levels of palmitoleic acid may contribute to beneficial effects of Krill oil on glucose homeostasis in dietary obese mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2020;1865:158732. doi: 10.1016/j.bbalip.2020.158732. PubMed DOI

Rossmeisl M., Medrikova D., Van Schothorst E.M., Pavlisova J., Kuda O., Hensler M., Bardova K., Flachs P., Stankova B., Vecka M., et al. Omega-3 phospholipids from fish suppress hepatic steatosis by integrated inhibition of biosynthetic pathways in dietary obese mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2014;1841:267–278. doi: 10.1016/j.bbalip.2013.11.010. PubMed DOI

Paluchova V., Vik A., Cajka T., Brezinova M., Brejchova K., Bugajev V., Draberova L., Draber P., Buresova J., Kroupova P., et al. Triacylglycerol-rich oils of marine origin are optimal nutrients for induction of polyunsaturated docosahexaenoic acid ester of hydroxy linoleic acid (13-DHAHLA) with anti-inflammatory properties in mice. Mol. Nutr. Food Res. 2020;64:e1901238. doi: 10.1002/mnfr.201901238. PubMed DOI

Schuchardt J.P., Hahn A. Bioavailability of long-chain omega-3 fatty acids. Prostaglandins Leukot. Essent. Fat. Acids. 2013;89:1–8. doi: 10.1016/j.plefa.2013.03.010. PubMed DOI

Burri L., Berge K., Wibrand K., Berge R.K., Barger J.L. Differential effects of krill oil and fish oil on the hepatic transcriptome in mice. Front. Genet. 2011;2:45. doi: 10.3389/fgene.2011.00045. PubMed DOI PMC

Tillander V., Bjørndal B., Burri L., Bohov P., Skorve J., Berge R.K., Alexson S.E.H. Fish oil and krill oil supplementations differentially regulate lipid catabolic and synthetic pathways in mice. Nutr. Metab. 2014;11:20. doi: 10.1186/1743-7075-11-20. PubMed DOI PMC

Ferramosca A., Conte A., Burri L., Berge K., De Nuccio F., Giudetti A.M., Zara V. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats. PLoS ONE. 2012;7:e38797. doi: 10.1371/journal.pone.0038797. PubMed DOI PMC

Giles D.A., Moreno-Fernandez M.E., Stankiewicz T.E., Graspeuntner S., Cappelletti M., Wu D., Mukherjee R., Chan C.C., Lawson M.J., Klarquist J., et al. Thermoneutral housing exacerbates nonalcoholic fatty liver disease in mice and allows for sex-independent disease modeling. Nat. Med. 2017;23:829–838. doi: 10.1038/nm.4346. PubMed DOI PMC

Kleiner D.E., Brunt E.M., Van Natta M., Behling C., Contos M.J., Cummings O.W., Ferrell L.D., Liu Y.-C., Torbenson M.S., Unalp-Arida A., et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321. doi: 10.1002/hep.20701. PubMed DOI

Cinti S., Mitchell G., Barbatelli G., Murano I., Ceresi E., Faloia E., Wang S., Fortier M., Greenberg A.S., Obin M.S. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 2005;46:2347–2355. doi: 10.1194/jlr.M500294-JLR200. PubMed DOI

Obrowsky S., Chandak P.G., Patankar J.V., Povoden S., Schlager S., Kershaw E.E., Bogner-Strauss J.G., Hoefler G., Levak-Frank S., Kratky D. Adipose triglyceride lipase is a TG hydrolase of the small intestine and regulates intestinal PPARα signaling. J. Lipid Res. 2013;54:425–435. doi: 10.1194/jlr.m031716. PubMed DOI PMC

Flachs P., Rühl R., Hensler M., Janovska P., Zouhar P., Kus V., Jilkova Z.M., Papp E., Kuda O., Svobodova M., et al. Synergistic induction of lipid catabolism and anti-inflammatory lipids in white fat of dietary obese mice in response to calorie restriction and n-3 fatty acids. Diabetologia. 2011;54:2626–2638. doi: 10.1007/s00125-011-2233-2. PubMed DOI

Oseeva M., Paluchova V., Zacek P., Janovska P., Mráček T., Rossmeisl M., Hamplova D., Cadova N., Stohanzlova I., Flachs P., et al. Omega-3 index in the Czech Republic: No difference between urban and rural populations. Chem. Phys. Lipids. 2019;220:23–27. doi: 10.1016/j.chemphyslip.2019.02.006. PubMed DOI

Paluchova V., Oseeva M., Brezinova M., Cajka T., Bardova K., Adamcova K., Zacek P., Brejchova K., Balas L., Chodounska H., et al. Lipokine 5-PAHSA is regulated by adipose triglyceride lipase and primes adipocytes for de novo lipogenesis in mice. Diabetes. 2020;69:300–312. doi: 10.2337/db19-0494. PubMed DOI PMC

Brezinova M., Cajka T., Oseeva M., Stepan M., Dadova K., Rossmeislova L., Matous M., Siklova M., Rossmeisl M., Kuda O. Exercise training induces insulin-sensitizing PAHSAs in adipose tissue of elderly women. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2020;1865:158576. doi: 10.1016/j.bbalip.2019.158576. PubMed DOI

Chong J., Soufan O., Li C., Caraus I., Li S., Bourque G., Wishart D.S., Xia J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46:W486–W494. doi: 10.1093/nar/gky310. PubMed DOI PMC

Faul F., Erdfelder E., Lang A.-G., Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/BF03193146. PubMed DOI

Kuda O., Jelenik T., Jilkova Z., Flachs P., Rossmeisl M., Hensler M., Kazdova L., Ogston N., Baranowski M., Gorski J., et al. n-3 Fatty acids and rosiglitazone improve insulin sensitivity through additive stimulatory effects on muscle glycogen synthesis in mice fed a high-fat diet. Diabetologia. 2009;52:941–951. doi: 10.1007/s00125-009-1305-z. PubMed DOI

Tou J.C., Jaczynski J., Chen Y.-C. Krill for human consumption: Nutritional value and potential health benefits. Nutr. Rev. 2007;65:63–77. doi: 10.1111/j.1753-4887.2007.tb00283.x. PubMed DOI

Bajaj M., Suraamornkul S., Piper P., Hardies L.J., Glass L., Cersosimo E., Pratipanawatr T., Miyazaki Y., DeFronzo R.A. Decreased plasma adiponectin concentrations are closely related to hepatic fat content and hepatic insulin resistance in pioglitazone-treated type 2 diabetic patients. J. Clin. Endocrinol. Metab. 2004;89:200–206. doi: 10.1210/jc.2003-031315. PubMed DOI

Bugianesi E., Pagotto U., Manini R., Vanni E., Gastaldelli A., De Iasio R., Gentilcore E., Natale S., Cassader M., Rizzetto M., et al. Plasma adiponectin in nonalcoholic fatty liver is related to hepatic insulin resistance and hepatic fat content, not to liver disease severity. J. Clin. Endocrinol. Metab. 2005;90:3498–3504. doi: 10.1210/jc.2004-2240. PubMed DOI

Gastaldelli A., Kozakova M., Højlund K., Flyvbjerg A., Favuzzi A., Mitrakou A., Balkau B., RISC Investigators Fatty liver is associated with insulin resistance, risk of coronary heart disease, and early atherosclerosis in a large european population. Hepatology. 2009;49:1537–1544. doi: 10.1002/hep.22845. PubMed DOI

Yamauchi T., Kamon J., Minokoshi Y., Ito Y., Waki H., Uchida S., Yamashita S., Noda M., Kita S., Ueki K., et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase1. Nat. Med. 2002;8:1288–1295. doi: 10.1038/nm788. PubMed DOI

Zhou G., Myers R., Li Y., Chen Y., Shen X., Fenyk-Melody J., Wu M., Ventre J., Doebber T., Fujii N., et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Investig. 2001;108:1167–1174. doi: 10.1172/JCI13505. PubMed DOI PMC

Jelenik T., Rossmeisl M., Kuda O., Jilkova Z.M., Medrikova D., Kus V., Hensler M., Janovska P., Miksik I., Baranowski M., et al. AMP-activated protein kinase {alpha}2 subunit is required for the preservation of hepatic insulin sensitivity by n-3 polyunsaturated fatty acids. Diabetes. 2010;59:2737–2746. doi: 10.2337/db09-1716. PubMed DOI PMC

Andreelli F., Foretz M., Knauf C., Cani P.D., Perrin C., Iglesias M.A., Pillot B., Bado A., Tronche F., Mithieux G., et al. Liver AMPKalpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not by insulin. Endocrinology. 2006;147:2432–2441. doi: 10.1210/en.2005-0898. PubMed DOI

Petersen M.C., Shulman G.I. Roles of diacylglycerols and ceramides in hepatic insulin resistance. Trends Pharmacol. Sci. 2017;38:649–665. doi: 10.1016/j.tips.2017.04.004. PubMed DOI PMC

Ferramosca A., Zara V. Dietary fat and hepatic lipogenesis: Mitochondrial citrate carrier as a sensor of metabolic changes. Adv. Nutr. 2014;5:217–225. doi: 10.3945/an.113.004762. PubMed DOI PMC

Sanders F.W.B., Acharjee A., Walker C., Marney L., Roberts L.D., Imamura F., Jenkins B., Case J., Ray S., Virtue S., et al. Hepatic steatosis risk is partly driven by increased de novo lipogenesis following carbohydrate consumption. Genome Biol. 2018;19:79. doi: 10.1186/s13059-018-1439-8. PubMed DOI PMC

Berge R.K., Madsen L., Vaagenes H., Tronstad K.J., Gottlicher M., Rustan A.C. In contrast with docosahexaenoic acid, eicosapentaenoic acid and hypolipidaemic derivatives decrease hepatic synthesis and secretion of triacylglycerol by d-creased diacylglycerol acyltransferase activity and stimulation of fatty acid oxidation. Biochem. J. 1999;343 Pt 1:191–197. doi: 10.1042/bj3430191. PubMed DOI PMC

Kroupova P., Van Schothorst E., Keijer J., Bunschoten A., Vodicka M., Irodenko I., Oseeva M., Zacek P., Kopecky J., Rossmeisl M., et al. Omega-3 Phospholipids from krill oil enhance intestinal fatty acid oxidation more effectively than omega-3 triacylglycerols in high-fat diet-fed obese mice. Nutrients. 2020;12:2037. doi: 10.3390/nu12072037. PubMed DOI PMC

Sharma L., Lone N.A., Knott R.M., Hassan A., Abdullah T. Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6J mice, via restoration of hepatic autophagy. Food Chem. Toxicol. 2018;121:283–296. doi: 10.1016/j.fct.2018.09.011. PubMed DOI

Zhang J., Yang A., Wu Y., Guan W., Xiong B., Peng X., Wei X., Chen C., Liu Z. Stachydrine ameliorates carbon tetrachloride-induced hepatic fibrosis by inhibiting inflammation, oxidative stress and regulating MMPs/TIMPs system in rats. Biomed. Pharmacother. 2018;97:1586–1594. doi: 10.1016/j.biopha.2017.11.117. PubMed DOI

Tang W.W., Wang Z., Levison B.S., Koeth R.A., Britt E.B., Fu X., Wu Y., Hazen S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013;368:1575–1584. doi: 10.1056/NEJMoa1109400. PubMed DOI PMC

de Souza C.O., Teixeira A.A.S., Biondo L.A., Lima Junior E.A., Batatinha H.A.P., Rosa Neto J.C. Palmitoleic acid improves metabolic functions in fatty liver by PPARα-dependent AMPK activation. J. Cell. Physiol. 2017;232:2168–2177. doi: 10.1002/jcp.25715. PubMed DOI

Liu G., Gibson R.A., Callahan D., Guo X.-F., Li D., Sinclair A.J. Pure omega 3 polyunsaturated fatty acids (EPA, DPA or DHA) are associated with increased plasma levels of 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) in a short-term study in women. Food Funct. 2020;11:2058–2066. doi: 10.1039/C9FO02440A. PubMed DOI

Prentice K.J., Wendell S.G., Liu Y., Eversley J.A., Salvatore S.R., Mohan H., Brandt S.L., Adams A.C., Serena Wang X., Wei D., et al. CMPF, a metabolite formed upon prescription omega-3-acid ethyl ester supplementation, prevents and reverses steatosis. EBioMedicine. 2018;27:200–213. doi: 10.1016/j.ebiom.2017.12.019. PubMed DOI PMC

Sherriff J.L., O’Sullivan T.A., Properzi C., Oddo J.-L., Adams L.A. Choline. Its potential role in nonalcoholic fatty liver disease, and the case for human and bacterial genes. Adv. Nutr. 2016;7:5–13. doi: 10.3945/an.114.007955. PubMed DOI PMC

Qian K., Zhong S., Xie K., Yu D., Yang R., Gong D.-W. Hepatic ALT isoenzymes are elevated in gluconeogenic conditions including diabetes and suppressed by insulin at the protein level. Diabetes Metab. Res. Rev. 2015;31:562–571. doi: 10.1002/dmrr.2655. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Obesity alters adipose tissue response to fasting and refeeding in women: A study on lipolytic and endocrine dynamics and acute insulin resistance

. 2024 Sep 30 ; 10 (18) : e37875. [epub] 20240914

Haplotype variability in mitochondrial rRNA predisposes to metabolic syndrome

. 2024 Sep 11 ; 7 (1) : 1116. [epub] 20240911

Influence of Lipid Class Used for Omega-3 Fatty Acid Supplementation on Liver Fat Accumulation in MASLD

. 2024 Aug 31 ; 73 (Suppl 1) : S295-S320. [epub] 20240717

Nutrition and Bone Marrow Adiposity in Relation to Bone Health

. 2024 Aug 30 ; 73 (S1) : S107-S138. [epub] 20240515

Novel class of peptides disintegrating biological membranes to aid in the characterization of membrane proteins

. 2024 Apr ; 300 (4) : 107154. [epub] 20240311

Omega-3 PUFAs prevent bone impairment and bone marrow adiposity in mouse model of obesity

. 2023 Oct 14 ; 6 (1) : 1043. [epub] 20231014

Human bone marrow stromal cells: the impact of anticoagulants on stem cell properties

. 2023 ; 11 () : 1255823. [epub] 20230918

Study protocol: Identification and validation of integrative biomarkers of physical activity level and health in children and adolescents (INTEGRActiv)

. 2023 ; 11 () : 1250731. [epub] 20230912

Thermoneutral housing promotes hepatic steatosis in standard diet-fed C57BL/6N mice, with a less pronounced effect on NAFLD progression upon high-fat feeding

. 2023 ; 14 () : 1205703. [epub] 20230712

Short-Term Stability of Serum and Liver Extracts for Untargeted Metabolomics and Lipidomics

. 2023 Apr 24 ; 12 (5) : . [epub] 20230424

Optimization of Mobile Phase Modifiers for Fast LC-MS-Based Untargeted Metabolomics and Lipidomics

. 2023 Jan 19 ; 24 (3) : . [epub] 20230119

Knock-Out of ACBD3 Leads to Dispersed Golgi Structure, but Unaffected Mitochondrial Functions in HEK293 and HeLa Cells

. 2021 Jul 06 ; 22 (14) : . [epub] 20210706

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...