BACKGROUND: This paper brings new information about the genome and phenotypic characteristics of Pantoea agglomerans strain DBM 3797, isolated from fresh Czech hop (Humulus lupulus) in the Saaz hop-growing region. Although P. agglomerans strains are frequently isolated from different materials, there are not usually thoroughly characterized even if they have versatile metabolism and those isolated from plants may have a considerable potential for application in agriculture as a support culture for plant growth. METHODS: P. agglomerans DBM 3797 was cultured under aerobic and anaerobic conditions, its metabolites were analyzed by HPLC and it was tested for plant growth promotion abilities, such as phosphate solubilization, siderophore and indol-3-acetic acid productions. In addition, genomic DNA was extracted, sequenced and de novo assembly was performed. Further, genome annotation, pan-genome analysis and selected genome analyses, such as CRISPR arrays detection, antibiotic resistance and secondary metabolite genes identification were carried out. RESULTS AND DISCUSSION: The typical appearance characteristics of the strain include the formation of symplasmata in submerged liquid culture and the formation of pale yellow colonies on agar. The genetic information of the strain (in total 4.8 Mb) is divided between a chromosome and two plasmids. The strain lacks any CRISPR-Cas system but is equipped with four restriction-modification systems. The phenotypic analysis focused on growth under both aerobic and anaerobic conditions, as well as traits associated with plant growth promotion. At both levels (genomic and phenotypic), the production of siderophores, indoleacetic acid-derived growth promoters, gluconic acid, and enzyme activities related to the degradation of complex organic compounds were found. Extracellular gluconic acid production under aerobic conditions (up to 8 g/l) is probably the result of glucose oxidation by the membrane-bound pyrroloquinoline quinone-dependent enzyme glucose dehydrogenase. The strain has a number of properties potentially beneficial to the hop plant and its closest relatives include the strains also isolated from the aerial parts of plants, yet its safety profile needs to be addressed in follow-up research.
- Publikační typ
- časopisecké články MeSH
The main bottleneck in the return of industrial butanol production from renewable feedstock through acetone-butanol-ethanol (ABE) fermentation by clostridia, such as Clostridium beijerinckii, is the low final butanol concentration. The problem is caused by the high toxicity of butanol to the production cells, and therefore, understanding the mechanisms by which clostridia react to butanol shock is of key importance. Detailed analyses of transcriptome data that were obtained after butanol shock and their comparison with data from standard ABE fermentation have resulted in new findings, while confirmed expected population responses. Although butanol shock resulted in upregulation of heat shock protein genes, their regulation is different than was assumed based on standard ABE fermentation transcriptome data. While glucose uptake, glycolysis, and acidogenesis genes were downregulated after butanol shock, solventogenesis genes were upregulated. Cyclopropanation of fatty acids and formation of plasmalogens seem to be significant processes involved in cell membrane stabilization in the presence of butanol. Surprisingly, one of the three identified Agr quorum-sensing system genes was upregulated. Upregulation of several putative butanol efflux pumps was described after butanol addition and a large putative polyketide gene cluster was found, the transcription of which seemed to depend on the concentration of butanol.
- MeSH
- biologický transport genetika MeSH
- bioreaktory mikrobiologie MeSH
- buněčná membrána metabolismus MeSH
- butanoly toxicita MeSH
- Clostridium beijerinckii účinky léků genetika metabolismus MeSH
- fyziologický stres genetika MeSH
- glukosa metabolismus MeSH
- glykolýza genetika fyziologie MeSH
- mastné kyseliny metabolismus MeSH
- plasmalogeny biosyntéza MeSH
- proteiny teplotního šoku metabolismus MeSH
- quorum sensing genetika MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Clostridium beijerinckii NRRL B-598 is a sporulating, butanol and hydrogen producing strain that utilizes carbohydrates by the acetone-butanol-ethanol (ABE) fermentative pathway. The pathway consists of two metabolic phases, acidogenesis and solventogenesis, from which the latter one can be coupled with sporulation. Thorough transcriptomic profiling during a complete life cycle and both metabolic phases completed with flow cytometry, microscopy and a metabolites analysis helped to find out key genes involved in particular cellular events. The description of genes/operons that are closely involved in metabolism or the cell cycle is a necessary condition for metabolic engineering of the strain and will be valuable for all C. beijerinckii strains and other Clostridial species. The study focused on glucose transport and catabolism, hydrogen formation, metabolic stress response, binary fission, motility/chemotaxis and sporulation, which resulted in the composition of the unique image reflecting clostridial population changes. Surprisingly, the main change in expression of individual genes was coupled with the sporulation start and not with the transition from acidogenic to solventogenic metabolism. As expected, solvents formation started at pH decrease and the accumulation of butyric and acetic acids in the cultivation medium.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- Clostridium beijerinckii cytologie genetika MeSH
- fermentace genetika MeSH
- fyziologický stres * genetika MeSH
- glukosa metabolismus MeSH
- kyseliny metabolismus MeSH
- mastné kyseliny metabolismus MeSH
- proteiny teplotního šoku genetika metabolismus MeSH
- regulace genové exprese u bakterií * MeSH
- rozpouštědla metabolismus MeSH
- spory bakteriální metabolismus MeSH
- transkriptom genetika MeSH
- vodík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- biofilmy růst a vývoj MeSH
- buněčná membrána účinky léků MeSH
- buněčná stěna účinky léků MeSH
- butanoly metabolismus toxicita MeSH
- Clostridium účinky léků genetika metabolismus MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- mutageneze MeSH
- průmyslová mikrobiologie metody MeSH
- transkripční faktory genetika metabolismus MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Physiological changes in populations of Clostridium beijerinckii and Clostridium tetanomorphum were monitored by fluorescence staining and flow cytometry. To estimate the number of metabolically active cells in exponential growth, a combination of the dyes propidium iodide and carboxy fluorescein diacetate appeared to be a good choice for both species. During stationary phase, these stains did not reflect physiological changes sufficiently and therefore additional labeling with bis-(1,3-dibutylbarbituric acid) trimethineoxonol was applied. Results of fluorescence staining in solventogenic batch fermentations were compared with substrate-use data, the concentration of key metabolites and growth curves. We demonstrate that measurements by all methods were mutually compatible.
- MeSH
- barbituráty MeSH
- barvení a značení metody MeSH
- bioreaktory MeSH
- Clostridium fyziologie ultrastruktura MeSH
- fermentace * MeSH
- fluoresceiny MeSH
- fluorescenční barviva MeSH
- isoxazoly MeSH
- propidium MeSH
- průtoková cytometrie MeSH
- techniky vsádkové kultivace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The genus Monascus, comprising nine species, can reproduce either vegetatively with filaments and conidia or sexually by the formation of ascospores. The most well-known species of genus Monascus, namely, M. purpureus, M. ruber and M. pilosus, are often used for rice fermentation to produce red yeast rice, a special product used either for food coloring or as a food supplement with positive effects on human health. The colored appearance (red, orange or yellow) of Monascus-fermented substrates is produced by a mixture of oligoketide pigments that are synthesized by a combination of polyketide and fatty acid synthases. The major pigments consist of pairs of yellow (ankaflavin and monascin), orange (rubropunctatin and monascorubrin) and red (rubropunctamine and monascorubramine) compounds; however, more than 20 other colored products have recently been isolated from fermented rice or culture media. In addition to pigments, a group of monacolin substances and the mycotoxin citrinin can be produced by Monascus. Various non-specific biological activities (antimicrobial, antitumor, immunomodulative and others) of these pigmented compounds are, at least partly, ascribed to their reaction with amino group-containing compounds, i.e. amino acids, proteins or nucleic acids. Monacolins, in the form of β-hydroxy acids, inhibit hydroxymethylglutaryl-coenzyme A reductase, a key enzyme in cholesterol biosynthesis in animals and humans.
- MeSH
- barva MeSH
- biologické pigmenty biosyntéza chemie metabolismus farmakologie MeSH
- citrinin biosyntéza chemie metabolismus MeSH
- fermentace MeSH
- lidé MeSH
- Monascus metabolismus MeSH
- potravinářská barviva chemie metabolismus farmakologie MeSH
- rýže (rod) metabolismus mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
This review emphasises the fact that studies of acetone-butanol-ethanol (ABE) fermentation by solventogenic clostridia cannot be limited to research on the strain Clostridium acetobutylicum ATCC 824. Various 1-butanol producing species of the genus Clostridium, which differ in their patterns of product formation and abilities to ferment particular carbohydrates or glycerol, are described. Special attention is devoted to species and strains that do not produce acetone naturally and to the utilisation of lactose, inulin, glycerol and mixtures of pentose and hexose carbohydrates. Furthermore, process-mapping tools based on different principles, including flow cytometry, DNA microarray analysis, mass spectrometry, Raman microscopy, FT-IR spectroscopy and anisotropy of electrical polarisability, which might facilitate fermentation control and a deeper understanding of ABE fermentation, are introduced. At present, the methods with the greatest potential are flow cytometry and transcriptome analysis. Flow cytometry can be used to visualise and capture cells within clostridial populations as they progress through the normal cell cycle, in which symmetric and asymmetric cell division phases alternate. Cell viability of a population of Clostridium pasteurianum NRRL B-598 was determined by flow cytometry. Transcriptome analysis has been used in various studies including the detection of genes expressed in solventogenic phase, at sporulation, in the stress response, to compare expression patterns of different strains or parent and mutant strains, for studies of catabolite repression, and for the detection of genes involved in the transport and metabolism of 11 different carbohydrates. Interestingly, the results of transcriptome analysis also challenge our earlier understanding of the role of the Spo0A regulator in initiation of solventogenesis in C. acetobutylicum ATCC 824. Lastly, the review describes other significant recent discoveries, including the deleterious effects of intracellular formic acid accumulation in C. acetobutylicum DSM 1731 cells on the metabolic switch from acidogenesis to solventogenesis and the development of a high-cell density continuous system using Clostridium saccharoperbutylacetonicum N1-4, in which 1-butanol productivity of 7.99 g/L/h was reached.
- MeSH
- aceton metabolismus MeSH
- butanoly metabolismus MeSH
- Clostridium cytologie genetika metabolismus MeSH
- ethanol metabolismus MeSH
- fermentace * MeSH
- glycerol metabolismus MeSH
- hexosy metabolismus MeSH
- inulin metabolismus MeSH
- laktosa metabolismus MeSH
- pentosy metabolismus MeSH
- průtoková cytometrie MeSH
- Ramanova spektroskopie MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH