Nitro-oleic acid (NO2-OA), pluripotent cell-signaling mediator, was recently described as a modulator of the signal transducer and activator of transcription 3 (STAT3) activity. In our study, we discovered new aspects of NO2-OA involvement in the regulation of stem cell pluripotency and differentiation. Murine embryonic stem cells (mESC) or mESC-derived embryoid bodies (EBs) were exposed to NO2-OA or oleic acid (OA) for selected time periods. Our results showed that NO2-OA but not OA caused the loss of pluripotency of mESC cultivated in leukemia inhibitory factor (LIF) rich medium via the decrease of pluripotency markers (NANOG, sex-determining region Y-box 1 transcription factor (SOX2), and octamer-binding transcription factor 4 (OCT4)). The effects of NO2-OA on mESC correlated with reduced phosphorylation of STAT3. Subsequent differentiation led to an increase of the ectodermal marker orthodenticle homolog 2 (Otx2). Similarly, treatment of mESC-derived EBs by NO2-OA resulted in the up-regulation of both neural markers Nestin and β-Tubulin class III (Tubb3). Interestingly, the expression of cardiac-specific genes and beating of EBs were significantly decreased. In conclusion, NO2-OA is able to modulate pluripotency of mESC via the regulation of STAT3 phosphorylation. Further, it attenuates cardiac differentiation on the one hand, and on the other hand, it directs mESC into neural fate.
- MeSH
- biologické markery metabolismus MeSH
- buněčná diferenciace * účinky léků MeSH
- dusíkaté sloučeniny farmakologie MeSH
- embryoidní tělíska účinky léků metabolismus MeSH
- kardiomyocyty účinky léků metabolismus MeSH
- kyseliny olejové farmakologie MeSH
- myší embryonální kmenové buňky cytologie účinky léků metabolismus MeSH
- myši MeSH
- neurony cytologie účinky léků metabolismus MeSH
- organogeneze účinky léků MeSH
- pluripotentní kmenové buňky účinky léků metabolismus MeSH
- signální transdukce účinky léků MeSH
- transkripční faktor STAT3 metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Prostaglandins and inhibitors of their synthesis (cyclooxygenase (COX) inhibitors, non-steroidal anti-inflammatory drugs) were shown to play a significant role in the regulation of hematopoiesis. Partly due to their hematopoiesis-modulating effects, both prostaglandins and COX inhibitors were reported to act positively in radiation-exposed mammalian organisms at various pre- and post-irradiation therapeutical settings. Experimental efforts were targeted at finding pharmacological procedures leading to optimization of therapeutical outcomes by minimizing undesirable side effects of the treatments. Progress in these efforts was obtained after discovery of selective inhibitors of inducible selective cyclooxygenase-2 (COX-2) inhibitors. Recent studies have been able to suggest the possibility to find combined therapeutical approaches utilizing joint administration of prostaglandins and inhibitors of their synthesis at optimized timing and dosing of the drugs which could be incorporated into the therapy of patients with acute radiation syndrome.
- MeSH
- akutní radiační syndrom krev farmakoterapie etiologie metabolismus MeSH
- cyklooxygenasa 1 metabolismus MeSH
- cyklooxygenasa 2 metabolismus MeSH
- hematopoéza účinky léků MeSH
- inhibitory cyklooxygenasy 2 farmakologie terapeutické užití MeSH
- lidé MeSH
- metabolické sítě a dráhy účinky léků MeSH
- modely nemocí na zvířatech MeSH
- prostaglandiny biosyntéza farmakologie MeSH
- radioprotektivní látky farmakologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
We investigated and evaluated post-irradiation survival in cyclooxygenase-2-deficient (COX-2 KO) mice. Thirty-day survival following exposure of COX-2 KO mice to a lethal dose of 8.5 Gy of gamma-rays was observed to be statistically significantly lower in both males and females, as well as when the sexes were merged, in comparisons with their wild-type counterparts. These findings were related to the previous observations concerning the detrimental influence of the COX-2 genetic disruption on hematopoiesis in sublethally irradiated mice. Deteriorated post-irradiation survival of COX-2 KO mice confirmed the previously anticipated conclusion regarding negative influence of the antiinflammatory action of COX-2 deficiency under the conditions of exposure of the animals to ionizing radiation.
- MeSH
- cyklooxygenasa 2 nedostatek účinky záření MeSH
- míra přežití trendy MeSH
- myši knockoutované MeSH
- myši MeSH
- záření gama škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Several members of the TGF-beta family are known to effectively regulate the fate of hematopoietic progenitor cells in a complex and context-dependent manner. Growth differentiation factor-15 (GDF15) is a divergent member of the TGF-beta family. This stress-induced cytokine has been proposed to possess immunomodulatory functions and its high expression is often associated with progression of a variety of pathological conditions. GDF15 is also induced by chemotherapy and irradiation. Very few fundamental studies have been published regarding the effect of GDF15 in hematopoiesis. In this study, we analyzed the hematological status of untreated and gamma-irradiated mice deficient for GDF15 as a result of genetic knock-out (KO), in order to clarify the regulatory role of GDF15 in hematopoiesis. Significant differences between GDF15 KO mice and their pertinent WT controls were found in the parameters of blood monocyte numbers, blood platelet size, and distribution width, as well as in the values of bone marrow granulocyte/macrophage progenitor cells. Different tendencies of some hematological parameters in the GDF15 KO mice in normal conditions and those under exposure of the mice to ionizing radiation were registered. These findings are discussed in the context of the GDF15 gene function and its lack under conditions of radiation-induced damage.
- MeSH
- buňky kostní dřeně metabolismus účinky záření MeSH
- hematopoéza fyziologie účinky záření MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- růstový diferenciační faktor 15 nedostatek účinky záření MeSH
- záření gama škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Casein kinase 1δ/ε (CK1δ/ε) is a key component of noncanonical Wnt signaling pathways, which were shown previously to drive pathogenesis of chronic lymphocytic leukemia (CLL). In this study, we investigated thoroughly the effects of CK1δ/ε inhibition on the primary CLL cells and analyzed the therapeutic potential in vivo using 2 murine model systems based on the Eµ-TCL1-induced leukemia (syngeneic adoptive transfer model and spontaneous disease development), which resembles closely human CLL. We can demonstrate that the CK1δ/ε inhibitor PF-670462 significantly blocks microenvironmental interactions (chemotaxis, invasion and communication with stromal cells) in primary CLL cells in all major subtypes of CLL. In the mouse models, CK1 inhibition slows down accumulation of leukemic cells in the peripheral blood and spleen and prevents onset of anemia. As a consequence, PF-670462 treatment results in a significantly longer overall survival. Importantly, CK1 inhibition has synergistic effects to the B-cell receptor (BCR) inhibitors such as ibrutinib in vitro and significantly improves ibrutinib effects in vivo. Mice treated with a combination of PF-670462 and ibrutinib show the slowest progression of disease and survive significantly longer compared with ibrutinib-only treatment when the therapy is discontinued. In summary, this preclinical testing of CK1δ/ε inhibitor PF-670462 demonstrates that CK1 may serve as a novel therapeutic target in CLL, acting in synergy with BCR inhibitors. Our work provides evidence that targeting CK1 can represent an alternative or addition to the therapeutic strategies based on BCR signaling and antiapoptotic signaling (BCL-2) inhibition.
- MeSH
- chronická lymfatická leukemie farmakoterapie enzymologie genetika MeSH
- HEK293 buňky MeSH
- kaseinkinasa Idelta antagonisté a inhibitory genetika metabolismus MeSH
- kaseinkinasa Iepsilon antagonisté a inhibitory genetika metabolismus MeSH
- lékové transportní systémy MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové proteiny antagonisté a inhibitory genetika metabolismus MeSH
- pyrazoly farmakologie MeSH
- pyrimidiny farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In recent times, cytokines and hematopoietic growth factors have been at the center of attention for many researchers trying to establish pharmacological therapeutic procedures for the treatment of radiation accident victims. Two granulocyte colony-stimulating factor-based radiation countermeasures have been approved for the treatment of the hematopoietic acute radiation syndrome. However, at the same time, many different substances with varying effects have been tested in animal studies as potential radioprotectors and mitigators of radiation damage. A wide spectrum of these substances has been studied, comprising various immunomodulators, prostaglandins, inhibitors of prostaglandin synthesis, agonists of adenosine cell receptors, herbal extracts, flavonoids, vitamins, and others. These agents are often effective, relatively non-toxic, and cheap. This review summarizes the results of animal experiments, which show the potential for some of these untraditional or new radiation countermeasures to become a part of therapeutic procedures applicable in patients with the acute radiation syndrome. The authors consider β-glucan, 5-AED (5-androstenediol), meloxicam, γ-tocotrienol, genistein, IB-MECA (N⁶-(3-iodobezyl)adenosine-5'-N-methyluronamide), Ex-RAD (4-carboxystyryl-4-chlorobenzylsulfone), and entolimod the most promising agents, with regards to their contingent use in clinical practice.
- MeSH
- akutní radiační syndrom farmakoterapie prevence a kontrola MeSH
- cytokiny metabolismus MeSH
- hematopoetický systém účinky léků metabolismus MeSH
- lidé MeSH
- radioprotektivní látky terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The goal of combined pharmacological approaches in the treatment of the acute radiation syndrome (ARS) is to obtain an effective therapy producing a minimum of undesirable side effects. This review summarizes important data from studies evaluating the efficacy of combining radioprotective agents developed for administration prior to irradiation and therapeutic agents administered in a post-irradiation treatment regimen. Many of the evaluated results show additivity, or even synergism, of the combined treatments in comparison with the effects of the individual component administrations. It can be deduced from these findings that the research in which combined treatments with radioprotectors/radiomitigators are explored, tested, and evaluated is well-founded. The requirement for studies highly emphasizing the need to minimize undesirable side effects of the radioprotective/radiomitigating therapies is stressed.
- MeSH
- akutní radiační syndrom farmakoterapie metabolismus patofyziologie prevence a kontrola MeSH
- amifostin terapeutické užití MeSH
- dinoproston terapeutické užití MeSH
- experimentální radiační poranění farmakoterapie metabolismus patofyziologie MeSH
- faktor stimulující kolonie granulocytů terapeutické užití MeSH
- fixní kombinace léků MeSH
- lidé MeSH
- metformin terapeutické užití MeSH
- misoprostol terapeutické užití MeSH
- radioprotektivní látky terapeutické užití MeSH
- rozvrh dávkování léků MeSH
- synergismus léků MeSH
- vitamin E terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
We investigated hematopoiesis in untreated and ionizing radiation-exposed cyclooxygenase-2-deficient (COX-2 KO) mice. We performed a complex hematological analysis of 16 parameters in untreated COX-2 KO male mice or COX-2 KO male mice irradiated with the dose of 4 Gy of gamma-rays and their wildtype littermates. At baseline, hematopoiesis was increased in COX-2-deficient mice, but attenuated by irradation in COX-2-deficient mice compared to wildtype. To conclude, the anti-inflammatory action of the COX-2 genetic disruption plays a positive role in hematopoiesis under basal conditions but is detrimental following radiation exposure.
Adenosine A3 receptor knockout (A3AR KO) mice and their wild-type (WT) counterparts were compared from the point of view of their abilities to survive exposures to lethal doses of γ-radiation belonging to the range of radiation doses inducing the bone marrow acute radiation syndrome. Parameters of cumulative 30-day survival (experiment using a midlethal radiation dose) or cumulative 11-day survival (experiment using an absolutely lethal radiation dose), and of mean survival time were evaluated. The values of A3AR KO mice always reflected their higher survival in comparison with WT ones, the P values being above the limit for statistical significance after the midlethal radiation dose and standing for statistical significance after the absolutely lethal radiation dose. This finding was considered surprising, taking into account the previously obtained findings on defects in numbers and functional properties of peripheral blood cells in A3AR KO mice. Therefore, previous hematological analyses of A3AR KO mice were supplemented in the present studies with determination of serum levels of the granulocyte colony-stimulating factor, erythropoietin, and thrombopoietin. Though distinct differences in these parameters were observed between A3AR KO and WT mice, none of them could explain the relatively high postirradiation survival of A3AR KO mice. Further studies on these mice comprising also those on other than hemopoietic tissues and organs can help to clarify their relative radioresistance.
The purpose of the study was to describe and compare normal and 5-fluorouracil (5-FU)-suppressed hematopoiesis in adenosine A(3) receptor knock-out (A(3)AR KO) mice and their wild-type (WT) counterparts. To meet the purpose, a complex hematological analysis comprising nineteen peripheral blood and bone marrow parameters was performed in the mice. Defects previously observed in the peripheral blood erythrocyte and thrombocyte parameters of the A(3)AR KO mice were confirmed. Compartments of the bone marrow progenitor cells for granulocytes/macrophages and erythrocytes were enhanced in the control, as well as in the 5-FU-administered A(3)AR KO mice. 5-FU-induced hematopoietic suppression, evaluated on day 2 after the administration of the cytotoxic drug, was found to be significantly deeper in the A(3)AR KO mice compared with their WT counterparts, as measured at the level of the bone marrow progenitor cells. The rate of regeneration, as assessed between days 2 and 7 after 5-FU administration, was observed in the population of the granulocyte/macrophage progenitor cells to be higher in the A(3)AR KO mice in comparison with the WT ones. The increased depth of 5-FU-induced suppression in the compartments of the hematopoietic progenitor cells in the A(3)AR KO mice represents probably a hitherto undescribed further consequence of the lack of adenosine A(3) receptors and indicates its synergism with the pharmacologically induced cytotoxic action of 5-FU.
- MeSH
- biochemická analýza krve MeSH
- buňky kostní dřeně účinky léků MeSH
- fluoruracil farmakologie MeSH
- hematopoéza účinky léků MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- počet erytrocytů MeSH
- počet leukocytů MeSH
- protinádorové antimetabolity farmakologie MeSH
- receptor adenosinový A3 genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH