Although sexual reproduction is ubiquitous throughout nature, the molecular machinery behind it has been repeatedly disrupted during evolution, leading to the emergence of asexual lineages in all eukaryotic phyla. Despite intensive research, little is known about what causes the switch from sexual reproduction to asexuality. Interspecific hybridization is one of the candidate explanations, but the reasons for the apparent association between hybridization and asexuality remain unclear. In this study, we combined cross-breeding experiments with population genetic and phylogenomic approaches to reveal the history of speciation and asexuality evolution in European spined loaches (Cobitis). Contemporary species readily hybridize in hybrid zones, but produce infertile males and fertile but clonally reproducing females that cannot mediate introgressions. However, our analysis of exome data indicates that intensive gene flow between species has occurred in the past. Crossings among species with various genetic distances showed that, while distantly related species produced asexual females and sterile males, closely related species produce sexually reproducing hybrids of both sexes. Our results suggest that hybridization leads to sexual hybrids at the initial stages of speciation, but as the species diverge further, the gradual accumulation of reproductive incompatibilities between species could distort their gametogenesis towards asexuality. Interestingly, comparative analysis of published data revealed that hybrid asexuality generally evolves at lower genetic divergences than hybrid sterility or inviability. Given that hybrid asexuality effectively restricts gene flow, it may establish a primary reproductive barrier earlier during diversification than other "classical" forms of postzygotic incompatibilities. Hybrid asexuality may thus indirectly contribute to the speciation process.
- MeSH
- druhová specificita MeSH
- genetická variace MeSH
- haplotypy genetika MeSH
- hybridizace genetická * MeSH
- křížení genetické MeSH
- máloostní genetika MeSH
- nepohlavní rozmnožování genetika MeSH
- populační genetika MeSH
- reprodukční izolace MeSH
- vznik druhů (genetika) * MeSH
- zeměpis MeSH
- zvířata MeSH
- zygota fyziologie MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Prasinophytes are a paraphyletic assemblage of nine heterogeneous lineages in the Chlorophyta clade of Archaeplastida. Until now, seven complete mitochondrial genomes have been sequenced from four prasinophyte lineages. Here, we report the mitochondrial genome of Pyramimonas parkeae, the first representative of the prasinophyte clade I. The circular-mapping molecule is 43,294 bp long, AT rich (68.8%), very compact and it comprises two 6,671 bp long inverted repeat regions. The gene content is slightly smaller than the gene-richest prasinophyte mitochondrial genomes. The single identified intron is located in the cytochrome c oxidase subunit 1 gene (cox1). Interestingly, two exons of cox1 are encoded on the same strand of DNA in the reverse order and the mature mRNA is formed by trans-splicing. The phylogenetic analysis using the data set of 6,037 positions assembled from 34 mtDNA-encoded proteins of 48 green algae and plants is not in compliance with the branching order of prasinophyte clades revealed on the basis of 18S rRNA genes and cpDNA-encoded proteins. However, the phylogenetic analyses based on all three genomic elements support the sister position of prasinophyte clades Pyramimonadales and Mamiellales.
- MeSH
- anotace sekvence MeSH
- Chlorophyta enzymologie genetika MeSH
- DNA chloroplastová genetika MeSH
- DNA rostlinná MeSH
- Euglenida genetika MeSH
- exony genetika MeSH
- fylogeneze * MeSH
- genetická heterogenita MeSH
- genom mitochondriální genetika MeSH
- introny genetika MeSH
- messenger RNA genetika MeSH
- mitochondriální DNA genetika MeSH
- mitochondriální proteiny klasifikace genetika MeSH
- respirační komplex IV genetika MeSH
- RNA ribozomální 18S genetika MeSH
- rostlinné proteiny klasifikace genetika MeSH
- rostliny genetika MeSH
- sekvence nukleotidů MeSH
- trans-splicing MeSH
- Publikační typ
- časopisecké články MeSH
Mechanisms evolved in eukaryotes to handle heavy metals involve cytosolic, metal-binding metallothioneins (MTs). We have previously documented that the sequestration of silver (Ag) in the Ag-hyperaccumulating Amanita strobiliformis is dominated by 34-amino-acid (AA) AsMT1a, 1b, and 1c isoforms. Here we show that in addition to AsMT1a, 1b, and 1c isogenes, the fungus has two other MT genes: AsMT2 encoding a 34-AA AsMT2 similar to MTs known from other species, but unrelated to AsMT1s; AsMT3 coding for a 62-AA AsMT3 that shares substantial identity with as-yet-uncharacterized conserved peptides predicted in agaricomycetes. Transcription of AsMT1s and AsMT3 in the A. strobiliformis mycelium was specifically inducible by treatments with Ag or copper (Cu) and zinc (Zn) or cadmium (Cd), respectively; AsMT2 showed a moderate upregulation in the presence of Cd. Expression of AsMTs in the metal-sensitive Saccharomyces cerevisiae revealed that all AsMTs confer increased Cd tolerance (AsMT3 proved the most effective) and that, unlike AsMT1 and AsMT2, AsMT3 can protect the yeasts against Zn toxicity. The highest level of Cu tolerance was observed with yeasts expressing AsMT1a. Our data indicate that A. strobiliformis can specifically employ different MT genes for functions in the cellular handling of Ag and Cu (AsMT1s) and Zn (AsMT3).
- MeSH
- Amanita genetika metabolismus MeSH
- genetická transkripce účinky léků MeSH
- měď metabolismus MeSH
- metalothionein genetika metabolismus MeSH
- Saccharomyces cerevisiae účinky léků genetika metabolismus MeSH
- stanovení celkové genové exprese MeSH
- stříbro metabolismus MeSH
- tolerance léku MeSH
- zinek metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Multiple prokaryotic lineages use the arginine deiminase (ADI) pathway for anaerobic energy production by arginine degradation. The distribution of this pathway among eukaryotes has been thought to be very limited, with only two specialized groups living in low oxygen environments (Parabasalia and Diplomonadida) known to possess the complete set of all three enzymes. We have performed an extensive survey of available sequence data in order to map the distribution of these enzymes among eukaryotes and to reconstruct their phylogenies. RESULTS: We have found genes for the complete pathway in almost all examined representatives of Metamonada, the anaerobic protist group that includes parabasalids and diplomonads. Phylogenetic analyses indicate the presence of the complete pathway in the last common ancestor of metamonads and heterologous transformation experiments suggest its cytosolic localization in the metamonad ancestor. Outside Metamonada, the complete pathway occurs rarely, nevertheless, it was found in representatives of most major eukaryotic clades. CONCLUSIONS: Phylogenetic relationships of complete pathways are consistent with the presence of the Archaea-derived ADI pathway in the last common ancestor of all eukaryotes, although other evolutionary scenarios remain possible. The presence of the incomplete set of enzymes is relatively common among eukaryotes and it may be related to the fact that these enzymes are involved in other cellular processes, such as the ornithine-urea cycle. Single protein phylogenies suggest that the evolutionary history of all three enzymes has been shaped by frequent gene losses and horizontal transfers, which may sometimes be connected with their diverse roles in cellular metabolism.
The presence of mitochondria and related organelles in every studied eukaryote supports the view that mitochondria are essential cellular components. Here, we report the genome sequence of a microbial eukaryote, the oxymonad Monocercomonoides sp., which revealed that this organism lacks all hallmark mitochondrial proteins. Crucially, the mitochondrial iron-sulfur cluster assembly pathway, thought to be conserved in virtually all eukaryotic cells, has been replaced by a cytosolic sulfur mobilization system (SUF) acquired by lateral gene transfer from bacteria. In the context of eukaryotic phylogeny, our data suggest that Monocercomonoides is not primitively amitochondrial but has lost the mitochondrion secondarily. This is the first example of a eukaryote lacking any form of a mitochondrion, demonstrating that this organelle is not absolutely essential for the viability of a eukaryotic cell.
Eustigmatophyceae (Ochrophyta, Stramenopiles) is a small algal group with species of the genus Nannochloropsis being its best studied representatives. Nuclear and organellar genomes have been recently sequenced for several Nannochloropsis spp., but phylogenetically wider genomic studies are missing for eustigmatophytes. We sequenced mitochondrial genomes (mitogenomes) of three species representing most major eustigmatophyte lineages, Monodopsis sp. MarTras21, Vischeria sp. CAUP Q 202 and Trachydiscus minutus, and carried out their comparative analysis in the context of available data from Nannochloropsis and other stramenopiles, revealing a number of noticeable findings. First, mitogenomes of most eustigmatophytes are highly collinear and similar in the gene content, but extensive rearrangements and loss of three otherwise ubiquitous genes happened in the Vischeria lineage; this correlates with an accelerated evolution of mitochondrial gene sequences in this lineage. Second, eustigmatophytes appear to be the only ochrophyte group with the Atp1 protein encoded by the mitogenome. Third, eustigmatophyte mitogenomes uniquely share a truncated nad11 gene encoding only the C-terminal part of the Nad11 protein, while the N-terminal part is encoded by a separate gene in the nuclear genome. Fourth, UGA as a termination codon and the cognate release factor mRF2 were lost from mitochondria independently by the Nannochloropsis and T. minutus lineages. Finally, the rps3 gene in the mitogenome of Vischeria sp. is interrupted by the UAG codon, but the genome includes a gene for an unusual tRNA with an extended anticodon loop that we speculate may serve as a suppressor tRNA to properly decode the rps3 gene.
Archamoebae is an understudied group of anaerobic free-living or endobiotic protists that constitutes the major anaerobic lineage of the supergroup Amoebozoa. Hitherto, the phylogeny of Archamoebae was based solely on SSU rRNA and actin genes, which did not resolve relationships among the main lineages of the group. Because of this uncertainty, several different scenarios had been proposed for the phylogeny of the Archamoebae. In this study, we present the first multigene phylogenetic analysis that includes members of Pelomyxidae, and Rhizomastixidae. The analysis clearly shows that Mastigamoebidae, Pelomyxidae and Rhizomastixidae form a clade of mostly free-living, amoeboid flagellates, here called Pelobiontida. The predominantly endobiotic and aflagellated Entamoebidae represents a separate, deep-branching lineage, Entamoebida. Therefore, two unique evolutionary events, horizontal transfer of the nitrogen fixation system from bacteria and transfer of the sulfate activation pathway to mitochondrial derivatives, predate the radiation of recent lineages of Archamoebae. The endobiotic lifestyle has arisen at least three times independently during the evolution of the group. We also present new ultrastructural data that clarifies the primary divergence among the family Mastigamoebidae which had previously been inferred from phylogenetic analyses based on SSU rDNA.
- MeSH
- Archamoebae klasifikace genetika metabolismus ultrastruktura MeSH
- fixace dusíku genetika MeSH
- fylogeneze * MeSH
- mitochondrie metabolismus MeSH
- molekulární evoluce MeSH
- multigenová rodina genetika MeSH
- přenos genů horizontální genetika MeSH
- sírany metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
With the increasing demand for noninvasive approaches in monitoring head and neck cancer, circulating nucleic acids have been shown to be a promising tool. We focused on the global transcriptome of serum samples of head and neck squamous cell carcinoma (HNSCC) patients in comparison with healthy individuals. We compared gene expression patterns of 36 samples. Twenty-four participants including 16 HNSCC patients (from 12 patients we obtained blood samples 1 year posttreatment) and 8 control subjects were recruited. The Illumina HumanWG-6 v3 Expression BeadChip was used to profile and identify the differences in serum mRNA transcriptomes. We found 159 genes to be significantly changed (Storey's P value <0.05) between normal and cancer serum specimens regardless of factors including p53 and B-cell lymphoma family members (Bcl-2, Bcl-XL). In contrast, there was no difference in gene expression between samples obtained before and after surgery in cancer patients. We suggest that microarray analysis of serum cRNA in patients with HNSCC should be suitable for refinement of early stage diagnosis of disease that can be important for development of new personalized strategies in diagnosis and treatment of tumours but is not suitable for monitoring further development of disease.
- MeSH
- analýza hlavních komponent MeSH
- apoptóza genetika MeSH
- demografie MeSH
- dospělí MeSH
- genom lidský genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- messenger RNA krev genetika MeSH
- mikročipová analýza * MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- nádory hlavy a krku krev genetika patologie MeSH
- regulace genové exprese u nádorů MeSH
- senioři MeSH
- signální transdukce genetika MeSH
- spinocelulární karcinom krev genetika patologie MeSH
- stanovení celkové genové exprese MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- Bacteria * klasifikace MeSH
- biodegradace * MeSH
- buněčné kultury * metody přístrojové vybavení využití MeSH
- genetická variace MeSH
- genotypizační techniky MeSH
- metagenomika * MeSH
- mikrobiální genetika MeSH
- polychlorované bifenyly analýza MeSH
- studie případů a kontrol MeSH
- Publikační typ
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
The aim of the study was to investigate how selected natural compounds (naringin, caffeic acid, and limonene) induce shifts in both bacterial community structure and degradative activity in long-term polychlorinated biphenyl (PCB)-contaminated soil and how these changes correlate with changes in chlorobiphenyl degradation capacity. In order to address this issue, we have integrated analytical methods of determining PCB degradation with pyrosequencing of 16S rRNA gene tag-encoded amplicons and DNA-stable isotope probing (SIP). Our model system was set in laboratory microcosms with PCB-contaminated soil, which was enriched for 8 weeks with the suspensions of flavonoid naringin, terpene limonene, and phenolic caffeic acid. Our results show that application of selected plant secondary metabolites resulted in bacterial community structure far different from the control one (no natural compound amendment). The community in soil treated with caffeic acid is almost solely represented by Proteobacteria, Acidobacteria, and Verrucomicrobia (together over 99 %). Treatment with naringin resulted in an enrichment of Firmicutes to the exclusion of Acidobacteria and Verrucomicrobia. SIP was applied in order to identify populations actively participating in 4-chlorobiphenyl catabolism. We observed that naringin and limonene in soil foster mainly populations of Hydrogenophaga spp., caffeic acid Burkholderia spp. and Pseudoxanthomonas spp. None of these populations were detected among 4-chlorobiphenyl utilizers in non-amended soil. Similarly, the degradation of individual PCB congeners was influenced by the addition of different plant compounds. Residual content of PCBs was lowest after treating the soil with naringin. Addition of caffeic acid resulted in comparable decrease of total PCBs with non-amended soil; however, higher substituted congeners were more degraded after caffeic acid treatment compared to all other treatments. Finally, it appears that plant secondary metabolites have a strong effect on the bacterial community structure, activity, and associated degradative ability.
- MeSH
- Bacteria klasifikace genetika izolace a purifikace metabolismus MeSH
- biodegradace MeSH
- látky znečišťující půdu metabolismus MeSH
- polychlorované bifenyly metabolismus MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- rostliny metabolismus mikrobiologie MeSH
- sekundární metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH